<span>An imaginary line perpendicular to a reflecting surface is called "a normal" (principle line)
So, Your Answer would be Option B
Hope this helps!</span>
Explanation:
It is given that,
Displacement of the delivery truck,
(due east)
Then the truck moves,
(due south)
Let d is the magnitude of the truck’s displacement from the warehouse. The net displacement is given by :


d = 4.03 km
Let
is the direction of the truck’s displacement from the warehouse from south of east.


So, the magnitude and direction of the truck’s displacement from the warehouse is 4.03 km, 37.4° south of east.
Answer:
The steps are outlined in the explanation below.
Explanation:
The average velocity is derived midpoint from the initial to the final velocity. Here is the proof:
Find the total displacement:
let the displacement be given by the letter s
Then since the average velocity is defined as: 
where t = final time
t₀ = initial time
v = final speed
v₀ = initial time
where x denotes the position, then

where v =
and dx = change in distance with respect to time.
Answer:
The biggest factor affecting coastal erosion is the strength of the waves breaking along the coastline. A wave's strength is controlled by its fetch and the wind speed. Longer fetches & stronger winds create bigger, more powerful waves that have more erosive power.
Explanation:
hope it helps !
Answer:
Same frequency, shorter wavelength
Explanation:
The speed of a wave is given by


where,
f = Frequency
= Wavelength
It can be seen that the wavelength is directly proportional to the velocity.
Here the frequency of the sound does not change.
But the velocity of the sound in air is slower.
Hence, the frequency remains same and the wavelength shortens.