Answer:
h=2.86m
Explanation:
In order to give a quick response to this exercise we will use the equations of conservation of kinetic and potential energy, the equation is given by,

There is no kinetic energy in the initial state, nor potential energy in the end,

In the final kinetic energy, the energy contributed by the Inertia must be considered, as well,

The inertia of the bodies is given by the equation,



On the other hand the angular velocity is given by

Replacing these values in the equation,

Solving for h,

The kinetic energy of the mass at the instant it passes back through its equilibrium position is about 1.20 J

<h3>Further explanation</h3>
Let's recall Elastic Potential Energy formula as follows:

where:
<em>Ep = elastic potential energy ( J )</em>
<em>k = spring constant ( N/m )</em>
<em>x = spring extension ( compression ) ( m )</em>
Let us now tackle the problem!

<u>Given:</u>
mass of object = m = 1.25 kg
initial extension = x = 0.0275 m
final extension = x' = 0.0735 - 0.0275 = 0.0460 m
<u>Asked:</u>
kinetic energy = Ek = ?
<u>Solution:</u>
<em>Firstly , we will calculate the spring constant by using </em><em>Hooke's Law</em><em> as follows:</em>






<em>Next , we will use </em><em>Conservation of Energy</em><em> formula to solve this problem:</em>







<h3>Learn more</h3>

<h3>Answer details</h3>
Grade: High School
Subject: Physics
Chapter: Elasticity
Answer:
<h2>Derived quantities are based on fundamental quantities, and they can be given in terms of fundamental quantities.</h2>
<h3>Fundamental quantities are the base quantities of a unit system, and they are defined independent of the other quantities. </h3>
Explanation:
#Let's Study
#I Hope It's Helps
#Keep On Learning
#Carry On Learning

Answer:
The peak-to-peak ripple voltage = 2V
Explanation:
120V and 60 Hz is the input of an unfiltered full-wave rectifier
Peak value of output voltage = 15V
load connected = 1.0kV
dc output voltage = 14V
dc value of the output voltage of capacitor-input filter
where
V(dc value of output voltage) represent V₀
V(peak value of output voltage) represent V₁
V₀ = 1 - (
)V₁
make C the subject of formula
V₀/V₁ = 1 - (1 / 2fRC)
1 / 2fRC = 1 - (v₀/V₁)
C = 2fR ((1 - (v₀/V₁))⁻¹
Substitute for,
f = 240Hz , R = 1.0Ω, V₀ = 14V , V₁ = 15V
C = 2 * 240 * 1 (( 1 - (14/15))⁻¹
C = 62.2μf
The peak-to-peak ripple voltage
= (1 / fRC)V₁
= 1 / ( (120 * 1 * 62.2) )15V
= 2V
The peak-to-peak ripple voltage = 2V