1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
trasher [3.6K]
3 years ago
11

You are driving on a roadway with multiple lanes of travel in the same direction, and are approaching an emergency vehicle parke

d along the roadway. You must:a. Leave the lane closest to the emergency as soon as it is safe to do so, or slow down to a speed of 20 MPH below the posted speed limit.b. Yield to the emergency vehicle.c. If you are in the lane closest to the emergency vehicle, immediately come to a complete stop and ask if anyhelp is needed.d. All of the above.
Engineering
1 answer:
solmaris [256]3 years ago
7 0

Answer: a. Leave the lane closest to the emergency as soon as it is safe to do so, or slow down to a speed of 20 MPH below the posted speed limit.

Explanation:

Giving a way to the law enforcement vehicle and a medical emergency vehicle is necessary. If one approaches an emergency vehicle parked along the roadway one should change the lane as the vehicle may not move and the driver may also waste his or her time also one should also slow down his or her speed while approaching the vehicle as most of the emergency vehicle are in rush to reach the hospital so the driver should maintain some distance with the medical emergency vehicle.

You might be interested in
The pump of a water distribution system is powered by a 6-kW electric motor whose efficiency is 95 percent. The water flow rate
Sonja [21]

Answer:

a) Mechanical efficiency (\varepsilon)=63.15%  b) Temperature rise= 0.028ºC

Explanation:

For the item a) you have to define the mechanical power introduced (Wmec) to the system and the power transferred to the water (Pw).

The power input (electric motor) is equal to the motor power multiplied by the efficiency. Thus, Wmec=0.95*6kW=5.7 kW.

Then, the power transferred (Pw) to the fluid is equal to the flow rate (Q) multiplied by the pressure jump \Delta P. So P_W = Q*\Delta P=0.018m^3/s * 200x10^3 Pa=3600W.

The efficiency is defined as the ratio between the output energy and the input energy. Then, the mechanical efficiency is \varepsilon=3.6kW/5.7kW=0.6315=63.15\%

For the b) item you have to consider that the inefficiency goes to the fluid as heat. So it is necessary to use the equation of the heat capacity but in a "flux" way. Calling <em>H</em> to the heat transfered to the fluid, the specif heat of the water and \rho the density of the water:

[tex]H=(5.7-3.6) kW=\rho*Q*c*\Delta T=1000kg/m^3*0.018m^3/s*4186J/(kg \ºC)*\Delta T[/tex]

Finally, the temperature rise is:

\Delta T=2100/75348 \ºC=0.028 \ºC

7 0
3 years ago
A hollow shaft of diameter ratio 3/8 (internal dia to outer dia) is to transmit 375 kW power at 100 rpm. The maximum torque bein
Schach [20]

Answer:

External diameter = 158.15 mm mm

Internal diameter = 59.31 mm

Explanation:

We are given;

Diameter ratio; d_i = ⅜d_o

Where d_i is internal diameter and d_o is external diameter

Power;P = 375 KW = 375000 W

Rotational speed;N = 100 rpm

Max torque is 20% greater than mean torque; T_max = 1.2T_avg

Shear stress;τ = 60 N/mm²

Length; L = 4m = 4000 mm

Angle of twist; θ = 2° = 2π/180 radians

Modulus of rigidity;G = 0.85 X 10^(5) N/mm²

Formula for the power transmitted by the shaft is;

P = 2πNT_avg/60

Plugging in the relevant values, we have ;

375000 = 2π × 100T_avg/60

T_avg = (375000 × 60)/(2π × 100) = 35809.862 N.m = 35809862 N.mm

Since T_max = 1.20T_avg

Thus, T_max = 1.20(35809862) = 42971834.4 N.mm

Checking for strength, we'll use;

τ = Tr/J_p

Or since r = d/2

It can be written as;

τ = T(d_o)/2J_p - - - (1)

Where T is T_max

But Polar moment of inertia of hollow shaft is;

J_p = [π(d_o)⁴ - π(d_i)⁴]/32

Now, we are told that d_i = ⅜d_o

Thus;

J_p = [π(d_o)⁴ - π(⅜d_o)⁴]/32

J_p = (π/32) × d_o⁴(1 - 3⁴/8⁴)

J_p = 0.0926 d_o⁴

Plugging this for J_p in eq 1,we have;

τ = T(d_o)/2(0.0926d_o⁴)

Making d_o the subject gives;

d_o³ = T/(2 × 0.0926τ)

Plugging in the relevant values to give;

d_o³ = 42971834.4/(2 × 0.0926 × 60)

d_o³ = 3867155.7235421166

d_o = ∛3867155.7235421166

d_o = 156.96 mm

Thus, d_i = ⅜ × 156.96 = 58.86 mm

Checking for stiffness, we'll use;

T/J_p = Gθ/L

Again T is T_max

Plugging in the relevant values, we have;

42971834.4/0.0926 d_o⁴ = (0.85 × 10^(5) × 2π/180)/4000

464058686.825054/d_o⁴ = 0.7417649321

d_o⁴ = 464058686.825054/0.7417649321

d_o⁴ = 625614216.5028806

d_o = ∜625614216.5028806

d_o = 158.15 mm

d_i = ⅜ × 158.15 = 59.31 mm

So we will pick the highest values.

Thus;

d_o = 158.15 mm

d_i = 59.31 mm

3 0
3 years ago
A 60-m-long steel wire is subjected to a 6-kN tensile load. Knowing that E = 200 GPa and that the length of the rod increases by
Talja [164]

Answer:

(a) 6.91 mm (b) 160 MPa

Explanation:

Solution

Given that:

E = 200 GPa

The rod length = 48 mm

P =P¹ = 6 kN

Recall that,

1 kN = 10^3 N

1 m =10^3 mm

I GPa = 10^9 N/m²

Thus

The rod deformation is stated as follows:

δ = PL/AE-------(1)

σ = P/A----------(2)

Now,

(a) We substitute the values in equation and obtain the following:

48 * 10 ^⁻3 m =  (6 * 10³ N) (60 m)/A[ 200 * 10^9 N/m^2]

Thus, we simplify

A = (6 * 10³) (60)/ ( 200 * 10^9) (48 * 10 ^⁻3)m²

A =0.0375 * 10 ^⁻3 m²

A =37.5 mm²

A = π/4 d²

Thus,

d² = 4A /π

After inserting the values we have,

d = √37.5 * 4/3.14 mm

= 6.9116 mm

or d = 6.91 mm

Therefore, the smallest that should be used is 6.91 mm

(B) To determine the corresponding normal stress that is caused by the tensile force, we input the values in equation (2)

Thus,

σ = P/A

σ= 6 * 10 ^ 3 N/ 37. 5 * 10 ^⁻6 m²

σ= 160 MPa

Note: I MPa = 10^6 N/m²

Hence the the corresponding normal stress is σ= 160 MPa

5 0
3 years ago
A vacuum system, as used in sputtering electrically conducting thin films on microcircuits, is comprised of a baseplate maintain
Kitty [74]
The answer is b because it makes more sense
3 0
2 years ago
Which type of hybrid vehicle is propelled by only an electric motor and does not require a traditional transmission to drive the
liraira [26]

Answer:

Dual-Mode Hybrid

Explanation:

The type of hybrid vehicle propelled by only an electric motor and does not require a traditional transmission to drive the wheels is known as "DUAL-MODE HYBRID."

Dual-Mode Hybrid is a type of Hybrid Electric Vehicle (HEV) which contains a separate generator consisting of rechargeable batteries. The engine ensures the wheels and the generator are moved; thereby, the electric motor and the batteries are fully powered.

A good example is a Toyota Prius, where during driving conditions, only the electric motor drives the wheels, in which the batteries supply the car with power.

3 0
3 years ago
Other questions:
  • Twenty-five wooden beams were ordered or a construction project. The sample mean and he sample standard deviation were measured
    6·1 answer
  • Millions of years ago, the Sierra Nevada region began to be uplifted along a crack in Earth's crust. The region on the other sid
    14·1 answer
  • A 2-cm-diameter vertical water jet is injected upward by a nozzle at a speed of 15 m/s. Determine the maximum weight of a flat p
    10·1 answer
  • Whose job is it to ensure that a group stays focused and on schedule?
    9·2 answers
  • If the head loss in a 30 m of length of a 75-mm-diameter pipe is 7.6 m for a given flow rate of water, what is the total drag fo
    13·1 answer
  • Two common message delivery metrics that measure how much of the target market is exposed to the advertisement and the number of
    11·1 answer
  • Finally you will implement the full Pegasos algorithm. You will be given the same feature matrix and labels array as you were gi
    12·1 answer
  • Ai r is compressed by a 30-kW compressor from P1 to P2. The air t emperature i s maintained constant at 25oC during thi s proces
    11·1 answer
  • A _______ contact allows current to flow when the switch's operator is not activated.?
    6·1 answer
  • State two faults that are common in a simple cell​
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!