Answer:
1) 4.361 x 10 raised to power 8 revolutions
2) 1.744 x 10 raised to power 9 firings
3) 2.18 x 10 raised to power 8 intake strokes
Explanation:
The step by step explanation is as shown in the attachment
By applying the concepts of differential and derivative, the differential for y = (1/x) · sin 2x and evaluated at x = π and dx = 0.25 is equal to 1/2π.
<h3>How to determine the differential of a one-variable function</h3>
Differentials represent the <em>instantaneous</em> change of a variable. As the given function has only one variable, the differential can be found by using <em>ordinary</em> derivatives. It follows:
dy = y'(x) · dx (1)
If we know that y = (1/x) · sin 2x, x = π and dx = 0.25, then the differential to be evaluated is:





By applying the concepts of differential and derivative, the differential for y = (1/x) · sin 2x and evaluated at x = π and dx = 0.25 is equal to 1/2π.
To learn more on differentials: brainly.com/question/24062595
#SPJ1
Answer:
The solution and complete explanation for the above question and mentioned conditions is given below in the attached document.i hope my explanation will help you in understanding this particular question.
Explanation:
Answer:
d. low earth orbit (LEO)
Explanation:
This type of satellites form a constellation deployed as a series of “necklaces” in such a way that at any time, at least one satellite is visible by a receiver antenna, compensating the movement due to the earth rotation.
Opposite to that, a geostationary satellite is at an altitude that makes it like a fixed point over the Earth´s equator, rotating synchronously with the Earth, so it is always visible in a given area.