Answer:

Explanation:
Lets take the numerator of the fraction to be = x
So the denominator of the fraction is 4 more than the numerator = x+4
The fraction is ;
Now add 4 to the numerator and add 7 to the denominator as;

This new fraction is equal to 1 half =1/2
write the equation as;

perform cross-product
2(x+4 )=1( x+11 )
2x+8 = x + 11
2x-x = 11-8
x=3
The original fraction is;

Answer: The energy system related to your question is missing attached below is the energy system.
answer:
a) Work done = Net heat transfer
Q1 - Q2 + Q + W = 0
b) rate of work input ( W ) = 6.88 kW
Explanation:
Assuming CPair = 1.005 KJ/Kg/K
<u>Write the First law balance around the system and rate of work input to the system</u>
First law balance ( thermodynamics ) :
Work done = Net heat transfer
Q1 - Q2 + Q + W = 0 ---- ( 1 )
rate of work input into the system
W = Q2 - Q1 - Q -------- ( 2 )
where : Q2 = mCp T = 1.65 * 1.005 * 293 = 485.86 Kw
Q2 = mCp T = 1.65 * 1.005 * 308 = 510.74 Kw
Q = 18 Kw
Insert values into equation 2 above
W = 6.88 Kw
Answer:
Technicians A is right for the answer
Answer:
Marcus would have to take an exam administered by the national council of examiners for engineering and surveying.
Explanation:
Civil engineers design, construct, and maintain projects regarding infrastructure. A civil engineer also looks after the systems in the public and private sectors like roads, buildings, and systems for water supply and sewage treatment.
In order to pursue a career in civil engineering, Marcus aims to work for the city council as a civil engineer. Therefore, he would have to take an exam administered by the national council of examiners for engineering and surveying.
Answer:
14.52 minutes
<u>OR</u>
14 minutes and 31 seconds
Explanation:
Let's first start by mentioning the specific heat of air at constant volume. We consider constant volume and NOT constant pressure because the volume of the room remains constant while pressure may vary.
Specific heat at constant volume at 27°C = 0.718 kJ/kg*K
Initial temperature of room (in kelvin) = 283.15 K
Final temperature (required) of room = 293.15 K
Mass of air in room= volume * density= (4 * 5 * 7) * (1.204 kg/m3) = 168.56kg
Heat required at constant volume: 0.718 * (change in temp) * (mass of air)
Heat required = 0.718 * (293.15 - 283.15) * (168.56) = 1,210.26 kJ
Time taken for temperature rise: heat required / (rate of heat change)
Where rate of heat change = 10000 - 5000 = 5000 kJ/hr
Time taken = 1210.26 / 5000 = 0.24205 hours
Converted to minutes = 0.24205 * 60 = 14.52 minutes