Answer:
See explanation
Explanation:
Electrons transition between energy levels in an atom due to gain or loss of energy. An electron may gain energy and move from its ground state to one of the accessible excited states. The electron quickly returns to ground state, emitting the energy previously absorbed as a photon of light. The wavelength of light emitted is measured using powerful spectrometers.
Atoms can be excited thermally or by irradiation with light of appropriate frequency.
<span>Polar easterlies are wind belts that extend 60 degrees latitude. </span><span />
Energy decreases as it moves up trophic levels because energy is lost as metabolic heat when the organisms from one trophic level are consumed by organisms from the next level. Trophic level transfer efficiency (TLTE) measures the amount of energy that is transferred between trophic levels.
Respuesta:
90.0 %
Explicación:
Paso 1: Escribir la ecuación química balanceada
N₂ + 3 H₂ ⇒ 2 NH₃
Paso 2: Calcular el rendimiento teórico de NH₃ a partir de 140 g de N₂
En la ecuación balanceada, participan de N₂: 1 mol × 28.01 g/mol = 28.01 g y de NH₃: 2 mol × 17.03 g/mol = 34.06 g.
140 g N₂ × 34.06 g NH₃ /28.01 g N₂ = 170 g NH₃
Paso 3: Calcular el rendimiento porcentual de NH₃
El rendimiento experimental de NH₃ es 153 g. Podemos calcular el rendimiento porcentual usando la siguiente fórmula.
R% = rendimiento experimental / rendimiento teórico × 100%
R% = 153 g / 170 g × 100% = 90.0 %
2.63 g
Explanation:
One way to approach this problem is to determine the percent composition of hydrogen in water.