Answer:
(x +4)^2 -45
Step-by-step explanation:
The square of a binomial has the form ...
(x +a)^2 = x^2 +2ax +a^2
That is, the constant term (a^2) is the square of half the coefficient of the linear term: (2a/2)^2 = a^2.
To "complete the square", you add 0 in the form of the desired constant added to its opposite. Here, we want the constant for the square to be (8/2)^2 = 16. So, we can add 0 = 16 -16 to the expression:
x^2 +8x +16 -29 -16
(x^2 +8x +16) -45 . . . . group the terms that make the square
(x +4)^2 -45 . . . . rewritten after completing the square
Answer:
2x^2 + 6.
Step-by-step explanation:
Replace the x in f(x) by g(x):
f(g(x)) = 2(x^2 + 3)
= 2x^2 + 6.
Answer:
option A
Step-by-step explanation:
7. x=3 is the midpoint between the roots. The other root is x = 2*3 -(-5) = 11.
8a) f(x) = (x +3)^2 -49. The vertex is (-3, -49). The roots are -10, 4.
8b) y = (x+4)^2 -1. The vertex is (-4, -1). The roots are -5, -3.
8c) f(x) = 2(x +3)^2 -34. The vertex is (-3, -34). The roots are -3±√17.
Answer:
what equation
Step-by-step explanation:
what equation