Answer:
ax = -3.29[m/s²]
ay = -1.9[m/s²]
Explanation:
We must remember that acceleration is a vector and therefore has magnitude and direction.
In this case, it is accelerating downwards, therefore for a greater understanding we will make a diagram of said vector, this diagram is attached.
![a_{x}=-3.8*cos(30) = -3.29 [m/s^{2}]\\ a_{y}=-3.8*sin(30) = -1.9 [m/s^{2}]](https://tex.z-dn.net/?f=a_%7Bx%7D%3D-3.8%2Acos%2830%29%20%3D%20-3.29%20%5Bm%2Fs%5E%7B2%7D%5D%5C%5C%20a_%7By%7D%3D-3.8%2Asin%2830%29%20%3D%20-1.9%20%5Bm%2Fs%5E%7B2%7D%5D)
Answer: This is what I found hope it helps
Explanation:
For a cylinder that has both ends open resonant frequency is given by the following formula:

Where n is the resonance node, v is the speed of sound in air and L is the length of a cylinder.
The fundamental frequency is simply the lowest resonant frequency.
We find it by plugging in n=1:

To find what harmonic has to be excited so that it resonates at f>20Hz we simply plug in f=20 Hz and find our n:

We can see that any resonant frequency is simply a multiple of a base frequency.
Let us find which harmonic resonates with the frequency 20 Hz:

Since n has to be an integer, final answer would be 323.
The answer is marine west coast, humid subtropical and Mediterranean. <span />