Answer:
14.2 m/s
Explanation:
Given data:
Speed of the stream, v₁ = 7.1 m/s
let the cross section area at initial point be A₁
now area at the second point, A₂ = (1/2)A₁ = 0.5A₁
now, from the continuity equation, we have
A₁v₁ = A₂v₂
where, v₂ is the velocity at the narrowed portion
thus, on substituting the values, we get
A₁ × 7.1 = 0.5A₁ × v₂
or
v₂ = 14.2 m/s
Answer:
a) 
b)
c) 
d) Treat the humans as though they were points or uniform-density spheres.
Explanation:
Given:
- mass of Mars,

- radius of the Mars,

- mass of human,

a)
Gravitation force exerted by the Mars on the human body:

where:
= gravitational constant


b)
The magnitude of the gravitational force exerted by the human on Mars is equal to the force by the Mars on human.


c)
When a similar person of the same mass is standing at a distance of 4 meters:


d)
The gravitational constant is a universal value and it remains constant in the Universe and does not depends on the size of the mass.
- Yes, we have to treat Mars as spherically symmetric so that its center of mass is at its geometric center.
- Yes, we also have to ignore the effect of sun, but as asked in the question we have to calculate the gravitational force only due to one body on another specific body which does not brings sun into picture of the consideration.
Answer:
A) 0.660 g/ml
B) 1.297 ml
C) 0.272 g
Explanation:
Every substance, body or material has mass and volume, however the mass of different substances occupy different volumes. This is where density
appears as a physical characteristic property of matter that establishes a relationship between the mass
of a body or substance and the volume
it occupies:
(1)
Knowing this, let's begin with the answers:
<h2 /><h2>Answer A:</h2>
Here the mass is
and th volume
Solving (1) with these values:
(2)
(3)
<h2>Answer B:</h2>
In this case the mass of a sample is
and its density is
.
Isolating
from (1):
(4)
(5)
(5)
<h2>Answer C:</h2>
In this case the volume of a sample is
and its density is
.
Isolating
from (1):
(6)
(7)
(8)
Downward movement under the force of gravity only.
when the apple moves in a horizontal circle, the tension force in the string provides the necessary centripetal force to move in circle. the tension in the string is given as
T=mv²/r
where T = tension force in the string , m = mass of the apple
v = speed of apple , r = radius of circle.
clearly , tension force depends on the square of the speed. hence greater the speed, greater will be the tension force.
at some point , the speed becomes large enough that it makes the tension force in the string becomes greater than the tensile strength of the string. at that point , the string breaks