1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vlada [557]
2 years ago
11

Anything that has mass and occupies space is defined as.

Physics
1 answer:
forsale [732]2 years ago
8 0

Answer:

matter is the correct answer.

You might be interested in
A 50-kg satellite circles the Earth in an orbit with a period of 120 min. What minimum energy is required to change the orbit to
uysha [10]

Answer: 2.94×10^8 J

Explanation:

Using the relation

T^2 = (4π^2/GMe) r^3

Where v= velocity

r = radius

T = period

Me = mass of earth= 6×10^24

G = gravitational constant= 6.67×10^-11

4π^2/GMe = 4π^2 / [(6.67x10^-11 x6.0x10^24)]

= 0.9865 x 10^-13

Therefore,

T^2 = (0.9865 × 10^-13) × r^3

r^3 = 1/(0.9865 × 10^-13) ×T^2

r^3 = (1.014 x 10^13) × T^2

To find r1 and r2

T1 = 120min = 120*60 = 7200s

T2 = 180min = 180*60= 10800s

Therefore,

r1 = [(1.014 x 10^13)7200^2]^(1/3) = 8.07 x 10^6 m

r2 = [(1.014 x 10^13)10800^2]^(1/3) = 10.57 x 10^6 m

Required Mechanical energy

= - GMem/2 [1/r2 - 1/r1]

= (6.67 x 10^-11 x 6.0 x 10^24 * 50)/2 * [(1/8.07 × 10^-6 )- (1/10.57 × 10^-6)]

= (2001 x 10^7)/2 * (0.1239 - 0.0945)

= (1000.5 × 10^7) × 0.0294

= 29.4147 × 10^7 J

= 2.94 x 10^8 J.

6 0
3 years ago
he calculation of kinetic energy uses the formula, KE = 1 2 mv2. Identify the unit that is required for mass and velocity, respe
Umnica [9.8K]
Mass is measured in kg
Velocity is measured in ms^-1
Hope this is what you were looking for
5 0
3 years ago
A policeman is chasing a criminal across a rooftop at 10 m/s. He decides to jump to the next building which is 2 meters across f
Alexus [3.1K]
At 10 m/s, it will take
  (2 m)/(10 m/s) = 0.2 s
to bridge the gap.

_____
However, it will take an additional 0.514 seconds (0.714 s total) for the policeman to land on the building below. The answer depends on the meaning of the question.

3 0
3 years ago
Please someone help, I’m very confused and it’s due soon, thanks
Anit [1.1K]

Answer:

  1. 1 s
  2. 19.6 m
  3. 2 s
  4. 0.8 m/s^2
  5. 28 m/s
  6. 79 m/s
  7. 0.37 s
  8. 26 m/s
  9. 242 m/s
  10. 19,930 m

Explanation:

In physics, many of the relationships between speed, distance, and acceleration are tied up in the equations for potential and kinetic energy. For an object of mass M* at height h in a gravity field with acceleration g, the potential energy is

  PE = Mgh

At velocity v, the kinetic energy of the object is ...

  KE = 1/2Mv^2

When an object is dropped or launched from rest, the height and velocity are related by the fact that kinetic energy gets translated to potential energy, or vice versa. This gives rise to ...

  PE = KE

  Mgh = (1/2)Mv^2

The mass (M) can be factored out of this, so we have ...

  2gh = v^2

This can be solved for height:

  h = v^2/(2g) . . . . [eq1]

or for velocity:

  v = √(2gh) . . . . [eq2]

__

When acceleration is constant, as assumed here, the velocity changes linearly (to/from 0). So, over the time of travel, the average velocity is half the final velocity. That is,

  t = 2h/v

Depending on whether you start with h or with v, this resolves to two more equations:

  t = 2(v^2/(2g))/v = v/g . . . . [eq3]

  t = 2h/(√(2gh)) = √(4h^2/(2gh)) = √(2h/g) . . . . [eq4]

The last of these can be rearranged to give distance as a function of time:

  h = gt^2/2 . . . . [eq5]

or acceleration as a function of time and distance:

  g = 2h/t^2 . . . . [eq6]

__

These 6 equations can be used to solve the problems posed. Just "plug and chug." For problems in Earth's gravity, we use g=9.8 m/s^2. (You may want to keep these equations handy. Be aware of the assumptions they make.)

_____

* M is used for mass in these equations so as not to get confused with m, which is used for meters.

_____

1) Use [eq4]: t = √(2·6 m/(9.8 m/s^2)) ≈ 1.107 s ≈ 1 s

__

2) Use [eq5]: h = (9.8 m/s^2)(2 s)^2/2 = 19.6 m

__

3) Use [eq4]: t = √(25 m/(4.9 m/s^2)) ≈ 2.259 s ≈ 2 s

__

4) Use [eq6]: g = 2(10 m)/(5 s)^2 = 0.8 m/s^2

__

5) Use [eq2]: v = √(2·9.8 m/s^2·40 m) = 28 m/s

__

6) Use [eq2]: v = √(2·9.8 m/s^2·321 m) ≈ 79.32 m/s ≈ 79 m/s

__

7) Using equation [eq3], we will find the time until Tina reaches her maximum height. Her actual off-the-ground total time is double this value. Using [eq3]: t = v/g = (1.8 m/s)/(9.8 m/s^2) = 9/49 s. Tina is in the air for double this time:

  2(9/49 s) ≈ 0.37 s

__

8) Use [eq2]: v = √(2·9.8 m/s^2·33.5 m) ≈ 25.624 m/s ≈ 26 m/s

__

9) Use [eq2]: v = √(2·9.8·3000) m/s ≈ 242.49 m/s ≈ 242 m/s

(Note: the terminal velocity in air is a lot lower than this for an object like a house.)

__

10) Use [eq1]: h = (625 m/s)^2/(2·9.8 m/s^2) ≈ 19,930 m

_____

<em>Additional comment</em>

Since all these questions make use of the same equation development, I have elected to answer them. Your questions are more likely to be answered if you restrict your posts to 3 or fewer questions each.

5 0
3 years ago
About where is our solar system located within the milky way galaxy?
sashaice [31]
Solar system is nested nearly 2/3 of the way from the center of the galaxy to the outskirt of the galactic disc.
6 0
3 years ago
Other questions:
  • (SHOULDN'T BE HARD!!!!) How does gravity impact two objects in space?
    11·1 answer
  • Can someone help me on 2 science question,
    9·2 answers
  • The free throw line in basketball is 4.57 m (15 ft) from the basket, which is 3.05 m (10 ft) above the floor. A player standing
    9·1 answer
  • This is the sum of all the forces applied to an object. It is usually separated into a horizontal and vertical component.
    10·2 answers
  • explain why if charge cannot be created or destroyed, electrically neutral objects can become electrically charged
    6·1 answer
  • A theory that stands the test of time and becomes the basis for a field of
    9·2 answers
  • Can someone help? Please?
    15·2 answers
  • A skydiver falls from rest through air and reaches teminal velocity
    11·1 answer
  • Can u please help me
    15·1 answer
  • A merry go round has rotational inertia (moment of inertia) of 73.0 kg/m^2 and is rotating at a constant speed of 30.0 rads./sec
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!