Hi there!
We can begin by calculating the time taken to reach its highest point (when the vertical velocity = 0).
Remember to break the velocity into its vertical and horizontal components.
Thus:
0 = vi - at
0 = 16sin(33°) - 9.8(t)
9.8t = 16sin(33°)
t = .889 sec
Find the max height by plugging this time into the equation:
Δd = vit + 1/2at²
Δd = (16sin(33°))(.889) + 1/2(-9.8)(.889)²
Solve:
Δd = 7.747 - 3.873 = 3.8744 m
Answer:
<h3>The answer is 2.15 m/s²</h3>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula
where
f is the force
m is the mass
From the question we have
We have the final answer as
<h3>2.15 m/s²</h3>
Hope this helps you
Wavelength = c/f.
Wavelength =0.5km