Answer: 3.69 × 10^27
Explanation:
Amount of energy required = 7.06 × 10^4 J
Frequency of microwave (f) = 2.88 × 10^10 s−1
Planck's constant (h) = 6.63 × 10^-34 Jᐧs/quantum
Recall ;
Energy of photon = hf
Therefore, energy of photon :
(6.63 × 10^-34)j.s× (2.88 × 10^10)s^-1
= 19.0944 × 10^(-34 + 10) = 19.0944×10^-24 J
Hence, number of quanta required :
(7.06 × 10^4)J / (19.0944 × 10^-24)J
= 0.369 × 10^(4 + 24) = 0.369×10^28
= 3.69 × 10^27
For a p type of semiconductor we need a dopant which is from 13th group in periodic table
Al , B, Ga, In Tl
So the correct element will be In : Indium
The other elements belongs to 15th group and hence will give n type semiconductor
Answer:
= 3132.9 Joules
Explanation:
- Kinetic energy is the energy possessed by a body when in motion.
- Kinetic energy is calculated by the formula; K.E = 1/2 mV², where m is the mass of the body or object, and V is the velocity.
- Therefore kinetic energy depends on the mass and the velocity of the body or the object in motion.
In this case;
Kinetic energy = 0.5 × 0.018 kg × 590²
<u>= 3132.9 Joules</u>
Answer:
Vertically Shrunk by a factor of 1/6
Explanation:
Parent Formula: f(x) = a(bx - c) + d
<em>a</em> - vertical shrink/stretch and x-reflections
<em>b</em> - horizontal shrink/stretch and y-reflections
<em>c</em> - horizontal movement left/right
<em>d</em> - vertical movement up/down
Since we are only modifying <em>a</em>, we are dealing with vertical shrink/stretch:
Since a < 1 (1/6 < 1), we are dealing with a vertical shrink of 1/6.
Since a > 0 (1/6 > 0), we do not have a reflection over the x-axis.
The most appropriate and most commonly used metric when describing a person's mass is D.) kilograms
I hope this helped!! :))