Answer:
The rate of heat generation in the wire per unit volume is 5.79×10^7 Btu/hrft^3
Heat flux is 9.67×10^7 Btu/hrft^2
Explanation:
Rate of heat generation = 1000 W = 1000/0.29307 = 3412.15 Btu/hr
Area (A) = πD^2/4
Diameter (D) = 0.08 inches = 0.08 in × 3.2808 ft/39.37 in = 0.0067 ft
A = 3.142×0.0067^2/4 = 3.53×10^-5 ft^2
Volume (V) = A × Length
L = 20 inches = 20 in × 3.2808 ft/39.37 in = 1.67 ft
V = 3.53×10^-5 × 1.67 = 5.8951×10^-5 ft^3
Rate of heat generation in the wire per unit volume = 3412.15 Btu/hr ÷ 5.8951×10^-5 ft^3 = 5.79×10^7 Btu/hrft^3
Heat flux = 3412.15 Btu/hr ÷ 3.53×10^-5 ft^2 = 9.67×10^7 Btu/hrft^2
Answer:
Light = A xor B
Explanation:
If switches A and B produce True or False, then Light will be True for ...
Light = A xor B
Answer:
Explanation:
A woman walks due west on the deck of a ship at 3 miyh.The ship is moving north at a speed of 22 miyh.Find the speed and direction of the woman relative to the surface of the water.
Answer:
18 kJ
Explanation:
Given:
Initial volume of air = 0.05 m³
Initial pressure = 60 kPa
Final volume = 0.2 m³
Final pressure = 180 kPa
Now,
the Work done by air will be calculated as:
Work Done = Average pressure × Change in volume
thus,
Average pressure =
= 120 kPa
and,
Change in volume = Final volume - Initial Volume = 0.2 - 0.05 = 0.15 m³
Therefore,
the work done = 120 × 0.15 = 18 kJ
Answer:
2.44 mV
Explanation:
This question has to be one of analog quantization size questions and as such, we use the formula
Q = (V₂ - V₁) / 2^n
Where
n = 12
V₂ = higher voltage, 5 V
V₁ = lower voltage, -5 V
Q = is the change in voltage were looking for
On applying the formula and substitutiting the values we have
Q = (5 - -5) / 2^12
Q = 10 / 4096
Q = 0.00244 V, or we say, 2.44 mV