Answer:
Step On: Your foot forces the clutch pedal down and then causes it to take up the slack. This, in turn, causes the clutch friction disk to slip, creating heat and ultimately wearing your clutch out.
Step Off: When the clutch pedal is released, the springs of the pressure plate push the slave cylinder's pushrod back, which forces the hydraulic fluid back into the master cylinder.
Answer should be C hopefully
Answer: Introduction to Steam Distillation. Steam distillation is a separation process which purifies isolate temperature-sensitive materials, such as natural aromatic compounds. In steam distillation, dry steam is passed through the plant material. These vapours undergo condensation and collection in receivers.
Explanation:
Answer:


Explanation:
For this case we have given the following data:
represent the temperature for the air
represent the velocity of the air
represent the specific heat ratio at the room
represent the gas constant for the air
And we want to find the velocity of the air under these conditions.
We can calculate the spped of the sound with the Newton-Laplace Equation given by this equation:

Where K = is the Bulk Modulus of air, k is the adiabatic index of air= 1.4, R = the gas constant for the air,
the density of the air and T the temperature in K
So on this case we can replace and we got:

The Mach number by definition is "a dimensionless quantity representing the ratio of flow velocity past a boundary to the local speed of sound" and is defined as:

Where v is the flow velocity and
the volocity of the sound in the medium and if we replace we got:

And since the Ma<0.8 we can classify the regime as subsonic.
Answer:
vec(a) = 16 i + 16 j
mag(a) = 22.63 ft/s^2
Explanation:
Given,
- The two components of velocity are given for fluid flow:
u = 4*y ft/s
v = 4*x ft/s
Find:
What is the time rate of change of the velocity vector V (i.e., the acceleration vector) for a fluid particle at x = 1 ft. and y = 1 ft. at time t = 1 second?
Solution:
- The rate of change of velocity is given to be acceleration. We will take derivative of each components of velocity with respect to time t:
a_x = du / dt
a_x = 4*dy/dt
a_y = dv/dt
a_y = 4*dx/dt
- The expressions dx/dt is the velocity component u and dy/dt is the velocity component v:
a_x = 4*(4*y) = 16y
a_y = 4*(4*x) = 16x
- The acceleration vector can be expressed by:
vec(a) = 16y i + 16x j
- Evaluate vector (a) at x = 1 and y = 1:
vec(a) = 16*1 i + 16*1 j = 16 i + 16 j
- The magnitude of acceleration is given by:
mag(a) = sqrt ( a^2_x + a^2_y )
mag(a) = sqrt ( 16^2 + 16^2 )
mag(a) = 22.63 ft/s^2