Answer:
Shiny like a limousine
You're spending like a cash machine
Smile, show your golden teeth
That's how you cover up your cavities
You're glowing like a diamond ring
I saw you bought some other things
You're spending like a cash machine
To cover up your insecurities
Don't front, no needExplanation:
3455
Answer:
(a) 
(b) Rubidium
Explanation:
Hello,
This titration is carried out by assuming that the volume of base doesn't have a significant change when the mass is added, thus, we state the following data a apply the down below formula to compute the molarity of the base solution:

Solving for the molarity of base we've got:

Now, we can compute the moles of the base as:

(a) Now, one divides the provided mass over the previously computed moles to get the molecular mass of the unknown base:

(b) Subtracting the atomic mass of oxygen and hydrogen, the metal's atomic mass turns out into:

So, that atomic mass dovetails to the Rubidium's atomic mass.
Best regards.
Answer:
Diferentes tipos de arcilla
ARCILLA DE LADRILLOS. Contiene muchas impurezas. ...
ARCILLA DE ALFARERO. Llamada también barro rojo y utilizada en alfarería y para modelar. ...
ARCILLA DE GRES. Es una arcilla con gran contenido de feldespato. ...
ARCILLAS “BALL CLAY” O DE BOLA. ...
CAOLIN. ...
ARCILLA REFRACTARIA. ...
BENTONITA.
Explanation:
Answer:
429.4 kJ are absorbed in the endothermic reaction.
Explanation:
The balanced chemical equation tells us that 1168 kJ of heat are absorbed in the reaction when 4 mol of NH₃ (g) react with 5 mol O₂ (g).
So what we need is to calculates how many moles represent 25 g NH₃(g) and calculate the heat absorbed. (NH₃ is the limiting reagent)
Molar Mass NH₃ = 17.03 g/mol
mol NH₃ = 25.00 g/ 17.03 g/mol = 1.47 mol
1168 kJ /4 mol NH₃ x 1.47 mol NH₃ = 429.4 kJ
Answer:
(B) 3
Explanation:
Citric acid has an acid dissociation constant (Ka) of 8.4 × 10⁻⁴. When it forms a buffer with its conjugate base (citrate), we can calculate the pH using the Henderson-Hasselbalch's equation.
![pH=pKa+log\frac{[base]}{[acid]}](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D)
The optimum range of pH is pKa ± 1. The pKa is -log Ka = -log (8.4 × 10⁻⁴) = 3.1. The buffer would be more effective for pH between 2.1 and 4.1, especially around 3.1. So the best choice is (B) 3.