1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kari74 [83]
3 years ago
15

Beating a carpet with a carpet beater.

Physics
1 answer:
prisoha [69]3 years ago
8 0
I would say a short person with muscles considering they are closer to the ground, but they may not be able to build up as much force in such a short time compared to the tall person.
You might be interested in
Two velcro-covered pucks slide across the ice, collide and stick to one another. Their interaction with the ice is frictionless.
balu736 [363]

Answer:

<em>1. False</em>

<em>2. True</em>

<em>3. False</em>

<em>4. True</em>

Explanation:

<u>Conservation of Momentum</u>

According to the law of conservation of linear momentum, the total momentum of the system formed by both pucks won't change regardless of their interaction if no external forces are acting on the system.

The momentum of an object of mass ma moving at speed va is

p_a=m_a.v_a

The total momentum of both pucks at the initial condition is

p_1=m_a.v_a+m_b.v_b

Both pucks are moving to the right and puck B has twice the mass of puck A (let's call it m), thus

m_a=m

m_b=2m

We are given

v_a=6\ m/s\\v_b=2\ m/s

The total initial momentum is

p_1=6m+2(2m)=10m

At the final condition, both pucks stick together, thus the total mass is 3m and the final speed is common, thus

p_2=3m.v'

Equating the initial and final momentum

10m=3m.v'

Solving for v'

v'=10/3\ m/s=3.33\ m/s

1. Compute the initial kinetic energy:

\displaystyle K_1=\frac{1}{2}mv_a^2+\frac{1}{2}2mv_b^2

\displaystyle K_1=\frac{1}{2}m\cdot 6^2+\frac{1}{2}2m\cdot 2^2

K_1=18m+4m=22m

The final kinetic energy is

\displaystyle K_2=\frac{1}{2}mv'^2+\frac{1}{2}2mv'^2

\displaystyle K_2=\frac{1}{2}m\cdot 3.33^2+\frac{1}{2}2m\cdot 3.33^2

K_2=16.63m

As seen, part of the kinetic energy is lost in the collision, thus the statement is False

2. The initial speed of puck B was 2 m/s and the final speed was 3.33 m/s, thus it increased the speed: True

3. The initial speed of puck A was 6 m/s and the final speed was 3.33 m/s, thus it decreased the speed: False

4. The momentum is conserved since that was the initial assumption to make all the calculations. True

p_1=10m

p_2=3m.v'=3m(10/3)=10m

Proven

5 0
3 years ago
How many orbitals are allowed in a subshell if the angular momentum quantum number for electrons in that subshell is 3?
svp [43]

Answer:

7 orbitals are allowed in a sub shell if the angular momentum quantum number for electrons in that sub shell is 3.

Explanation:

We that different values of m for a given l provide the total number of ways in which a given s, p,d and f sub shells in presence of magnetic field can be arranged in space along x, y ,z- axis or total number of orbitals into which a given subshell can be divided.

    Range for given l lies between -l to +l .

The possible values of m are -3 , -2 , -1 , 0 , 1 ,2 , 3 .

    Total number of orbitals are 7.

4 0
3 years ago
Sports managers have the potential to earn more than a million dollars per year.<br> True<br> false
andriy [413]

Answer:

true

Explanation:

hope this helped!

4 0
3 years ago
A traveling wave on a string can be described by the equation : y = (5.26 ~\text{m}) \cdot \sin \big( (1.65 ~\frac{\text{rad}}{\
zloy xaker [14]

Answer:

  t = 1.77 s

Explanation:

The equation of a traveling wave is

       y = A sin [2π (x /λ -t /T)]

where A is the oscillation amplitude, λ the wavelength and T the period

the speed of the wave is constant and is given by

      v = λ f

Where the frequency and period are related

     f = 1 / T

we substitute

      v = λ / T

let's develop the initial equation

    y = A sin [(2π / λ) x - (2π / T) t +Ф]

where Ф is a phase constant given by the initial conditions

the equation given in the problem is

    y = 5.26 sin (1.65 x - 4.64 t + 1.33)

if we compare the terms of the two equations

 

         2π /λ = 1.65

          λ = 2π / 1.65

          λ = 3.81 m

         2π / T = 4.64

          T = 2π / 4.64

          T = 1.35 s

we seek the speed of the wave

           v = 3.81 / 1.35

           v = 2.82 m / s

           

Since this speed is constant, we use the uniformly moving ratios

          v = d / t

           t = d / v

           t = 5 / 2.82

           t = 1.77 s

3 0
3 years ago
Which of the following is a correct formula of speed
satela [25.4K]

Answer:s= d/t

Explanation:

7 0
3 years ago
Other questions:
  • In the earth-moon system the moon orbits the earth. What is the "centripetal" force causing the moon to stay in orbit around the
    14·1 answer
  • Why does a coastal area have less variation in temperature than a noncoastal area
    12·1 answer
  • Instantaneous speed is measured
    14·1 answer
  • A model airplane traveling at 5 m/s approaches you. The frequency of the hum produced by the motor is 652 Hz. Assume the speed o
    15·1 answer
  • Zero gauge wire has a diameter of 0.32in and can carry a sustained current of 150A safely. What is the magnetic field a distance
    13·1 answer
  • What’s the resistance of the circuit
    9·1 answer
  • How much work must be done to raise a 1100kg car 2m above the ground?​
    15·2 answers
  • Describe the process of copper-plating. What occurs at the molecular level?
    12·1 answer
  • Please solve the Problem.
    14·1 answer
  • The water hose at your home outputs 24 gallons of water a minute. how many cubic centimeters per second does the hose output? th
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!