Ca(NO3)2 -------> Ca²⁺ +2NO3⁻
M(Ca(NO3)2)= M(Ca) + M(N) + 6M(O)= 40.0 +14.0 +6*16.0 = 150 g/mol
15.0 g Ca(NO3)2 * 1mol/150 g = 0. 100 mol Ca(NO3)2
Ca(NO3)2 -------> Ca²⁺ +2NO3⁻
1 mol 2 mol
0.100 mol 0.200 mol
We have 0.2 mol NO3⁻ in 300. mL=0.300 L of solution,
so
0.200 mol NO3⁻ / 0.300 L solution ≈ 0.667 mol NO3⁻ /L solution = 0.667 M
Concentration of NO3⁻ is 0.667 M.
Answer:
I hope this link helps you.
Explanation:
http://astronomy.swin.edu.au/cosmos/P/Phases
<h3>
Answer:</h3>
11.84 mol CoF₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
- Analyzing Reactions RxN
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Unbalanced] CoCl₂ + F₂ → CoF₂ + Cl₂
[RxN - Balanced] CoCl₂ + F₂ → CoF₂ + Cl₂
[Given] 11.84 moles CoCl₂
[Solve] moles CoF₂
<u>Step 2: Identify Conversions</u>
[RxN] 1 mol CoCl₂ → 1 mol CoF₂
<u>Step 3: Stoich</u>
- [DA] Set up:
- [DA] Multiply/Divide [Cancel out units]:
Answer:
343.98 nm is the longest wavelength of radiation with enough energy to break carbon–carbon bonds.
Explanation:
A typical carbon–carbon bond requires 348 kJ/mol=348000 J/mol
Energy required to breakl sigle C-C bond:E
where,
E = energy of photon
h = Planck's constant =
c = speed of light =
= wavelength of the radiation
Now put all the given values in the above formula, we get the energy of the photons.
343.98 nm is the longest wavelength of radiation with enough energy to break carbon–carbon bonds.