When two different air masses meet, a boundary is formed. the boundary between two air masses is called a front. weather at a front is usually cloudy and stormy. there at four different fronts: cold, warm, stationary, and occluded
Answer:
what is the question I cannot click the
Explanation:
Answer:
70.07 Hz
Explanation:
Since the sound is moving away from the observer then
and
when moving towards observer
With
of 76 then taking speed in air as 343 m/s we have


Similarly, with
of 65 we have

Now

v_s=27.76 m/s
Substituting the above into any of the first two equations then we obtain

Depends on how far away the event is and what the temperature is as this affects the speed of sound.
For example, let's say you're 600 meters away and the temperature has no affect.
The speed of sound would be roughly 340 m/s so the time it would take to hear the sound would be 600/340 = 1.76 seconds
The speed of light (c) is 3.0 X 10^8 m/s so the time it would take to see the event would be 600/3 X 10^8 = 2 X 10^-7
Subtract: 1.76 - (2 X 10^-7) = approx. 1.76
Velocity of an object is its rate of change of the object's position per interval of time. Velocity is a vector quantity which means that it consists of a magnitude and a direction. Magnitude is represented by the speed and the direction is represented by the angle. To determine the velocity components, we use trigonometric functions to determine the angle of the components. For the north component we, use the sine function while, for the west component, we use the cosine function. We calculate as follows:
north velocity component = (16.8 m/s) (sin 54°) = 16.4 m/s
<span>west velocity component = (16.8 m/s) (cos 54°) = 3.49 m/s</span>