1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stealth61 [152]
3 years ago
14

Firemen use a high-pressure hose to shoot a stream of water at a burning building. The water has a speed of 25.0 m/s as it leave

s the end of the hose and then exhibits projectile motion. The firemen adjust the angle of elevation α of the hose until the water takes 3.00 s to reach a building 45.0 m away. Ignore air resistance; assume that the end of the hose is at ground level. (a) Find α. (b) Find the speed and acceleration of the water at the highest point in its trajectory. (c) How high above the ground does the water strike the building, and how fast is it moving just before it hits the building?

Physics
1 answer:
polet [3.4K]3 years ago
6 0

Answer:

a) α=53.13°

b) V=15 m/s a=(-9.8 m/s^2)

c) Height= 15.9 m  Velocity= 17.7 m/s

Explanation:

I'm going to be including a picture of my working and explaining it here since I find it to be easier to teach.

In physics, in order to solve a problem, a drawing must be made for each question in order to comprehend what it asks and picture it better when solving equations, which is what I did and I recommend you do it as well when solving questions in the future, as well as setting a frame of reference for all motion going on, you'll soon see why.

a) In order to understand projectile motion, one must understand that motion in two dimensions, and therefore the forces that cause it, have two components: one for each axis of movement. I have chosen that the x-axis will determine horizontal movement, and the y-axis will determine vertical movement. Now, we have a velocity with a magnitude of 25 m/s that goes diagonally into the air at an unknown angle with unknown vertical and horizontal magnitudes. These characteristics sound like a right-angled triangle, and like such, we can draw one where its hypotenuse equals the initial velocity's magnitude, its length its horizontal magnitude (labelled Vx), its height its vertical magnitude (labelled Vy) and α the angle between the triangle's hypotenuse and length (drawn in the first picture to the right). Now, since velocity is now represented by a right-angle triangle, we can also use Pythagoras' theorem and SohCahToa on it.

Through SohCahToa we can now find an expression for the velocity's horizontal magnitude, this being Vx/V= cos (α), where we have two unknown variables: Vx and α. Observing the system we just drew, we can see that the only outside force acting on the water after leaving the hose is gravity, which pulls the water downwards and has no horizontal components, this means that the horizontal movement in our system will remain constant unless its physically stopped, as said by Newton's first law (When undisturbed a force in motion will stay in motion). Therefore the horizontal velocity of the water leaving the hose will be equal to the horizontal velocity of the water when it reaches the building, of which we know the distance from the hose and time of arrival. With this knowledge we can make a simple velocity calculation: V=distance/time, and find that the horizontal velocity of the water is always 15 m/s. Now we replace that value in the original horizontal velocity expression Vx/V= cos (α) and find α since we know both V (25 m/s) and Vx (15 m/s)

b) No calculations are really necessary in this question, since the highest point of the trajectory means that all upward motion has now stopped, or in other words: there is no more upwards velocity (Vy=0). Therefore, if one were to carry out Pythagoras' theorem at this point in the trajectory (hypotenuse equals the square root of the other two sides each squared), it would end up being equal to the horizontal velocity (15 m/s).

The only acceleration on this system is that of gravity, since its the only force acting on the water while in the air, and therefore its -9.8 m/s (or 9.81 or 10 depending on what values your teacher asks you to use) which is negative since it pulls the water downward according to my frame of reference.

c) Now, in order to determine final velocity and height we need to find the vertical magnitude of the initial velocity, which we can easily do with the triangle we used in a), this being Vy/V = sen (α) which we can change to Vy = V x sen (α). Replacing V and α we find that Vy= 20 m/s. Now, in order to find the height we can now turn to uniformly accelerated motion (UAM), since if we were to look at a drawing of Vy's movement on its own with gravity, it would travel in a straight line upwards and then fall downwards. Using UAM's formula for distance: y(t)= initial y value + initial velocity (Vi) x t + 1/2 x acceleration x t squared, and replacing it with the values we already have at the time the water reaches the building, the equation ends up looking like this: y(3s) = 0m (ground) + 20 m/s x 3s + 1/2 x (-9.8 m/s^2) x 3s^2. The result of this is y(3s)= 15.9 m.

The final vertical velocity (Vyf) can be found with another equation from UAM, which is Vf(t) = Vi + a x t. Replacing values we end up with Vf(3s) = 20 m/s + (-9.8 m/s^2) x 3s. The result is Vf(3s) = -9.4 m/s. Using Pythagoras with the values from when the water reached the building we get the final velocity, which is 17.7 m/s.

You might be interested in
Factors that affect pressure in liquids
Alona [7]
Two factors influence the pressure of fluids. They are the depth of the fluid and its density.
7 0
3 years ago
Read 2 more answers
If a statement is true, select true. if it's false, select false. <br>​
Elena L [17]

3 is false 2 is true and the rest true

7 0
3 years ago
Read 2 more answers
A basketball player is 4.22 m from
max2010maxim [7]

Answer: The height above the release point is 2.96 meters.

Explanation:

The acceleration of the ball is the gravitational acceleration in the y axis.

A = (0, -9.8m/s^)

For the velocity we can integrate over time and get:

V(t) = (9.20m/s*cos(69°), -9.8m/s^2*t + 9.20m/s^2*sin(69°))

for the position we can integrate it again over time, but this time we do not have any integration constant because the initial position of the ball will be (0,0)

P(t) = (9.20*cos(69°)*t, -4.9m/s^2*t^2 + 9.20m/s^2*sin(69°)*t)

now, the time at wich the horizontal displacement is 4.22 m will be:

4.22m = 9.20*cos(69°)*t

t = (4.22/ 9.20*cos(69°)) = 1.28s

Now we evaluate the y-position in this time:

h =  -4.9m/s^2*(1.28s)^2 + 9.20m/s^2*sin(69°)*1.28s = 2.96m

The height above the release point is 2.96 meters.

3 0
3 years ago
Read 2 more answers
A vehicle with a manual transaxle can be cranked and started without depressing the clutch pedal. Technician A says the clutch i
SashulF [63]

Answer: Technician B

Explanation: In manual cars,the clutch safety is designed to stop the vehicle from moving when you start the gnition. It prevents power from flowing into the circuit . This is found in the pedal mechanism of cars so depressing the clutch pedal will likely cause a defective in the clutch safety. You will begin to perceive the clutch burning and white fumes coming out from the pedal.

6 0
3 years ago
In the context of energy transfers with hot and cold reservoirs, the sign convention is that _______________.
Likurg_2 [28]

Answer:

B. QC > 0; QH < 0

Explanation:

Given that there are two reservoir of energy.

Sign convention for heat and work :

1.If the heat is adding to the system then it is taken as positive and if heat is going out from the system then it is taken as negative.

2. If the work is done on the system then it is taken as negative and if the work is done by the system then it is taken as positive.

From hot reservoir heat is going out that is why it is taken as negative

Q_H

From cold reservoir heat is coming inside the reservoir that is why it is taken as positive

Q_C>0

That is why the answer will be

Q_H ,Q_C>0

8 0
3 years ago
Other questions:
  • The surgical fusion (joining together) of two bones to stiffen a joint, such as an ankle, elbow or shoulder, is known as
    15·1 answer
  • NEED HELP!!!!!! CAN SOMEBODY HELP ME?
    15·1 answer
  • Scientists have changed the model of the atom as they have gathered new evidence. One of the atomic models is shown below.
    7·1 answer
  • Which of the following statements are true? I. The number of protons in an element is the same for all neutral atoms of that ele
    9·1 answer
  • Lightning As a crude model for lightning, consider the ground to be one plate of a parallel-plate capacitor and a cloud at an al
    14·1 answer
  • 4) You have a 10 ohm resistor connected in series with an ammeter. The voltage applied to the whole circuit is 1.2 volts. At the
    13·2 answers
  • For a submarine, identify when it will have the GREATEST buoyant force acting on it. Assume that neither the volume of the subma
    7·1 answer
  • Un tren de alta velocidad (TAV) o tren bala es aquel que alcanza velocidades iguales o superiores a 200 km/h. La energía que tie
    9·1 answer
  • 전기를 사용하여 다른 재료에 원하는 금속 층을 증착하는 과정을 ____라고 합니다.
    12·1 answer
  • The following equation shows the position of a particle in time t, x=at2i + btj where t is in second and x is in meter. A=2m/s2,
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!