Answer:
a) 17.33 V/m
b) 6308 m/s
Explanation:
We start by using equation of motion
s = ut + 1/2at², where
s = 1.2 cm = 0.012 m
u = 0 m/s
t = 3.8*10^-6 s, so that
0.012 = 0 * 3.8*10^-6 + 0.5 * a * (3.8*10^-6)²
0.012 = 0.5 * a * 1.444*10^-11
a = 0.012 / 7.22*10^-12
a = 1.66*10^9 m/s²
If we assume the electric field to be E, and we know that F =qE. Also, from Newton's law, we have F = ma. So that, ma = qE, and E = ma/q, where
E = electric field
m = mass of proton
a = acceleration
q = charge of proton
E = (1.67*10^-27 * 1.66*10^9) / 1.6*10^-19
E = 2.77*10^-18 / 1.6*10^-19
E = 17.33 V/m
Final speed of the proton can be gotten by using
v = u + at
v = 0 + 1.66*10^9 * 3.8*10^-6
v = 6308 m/s
There a two significant digits
explanation:
Trailing zeros after a decimal point count if preceded by a non-zero value. Example: 0.01 one significant figure, 0.010 two significant figures, 0.0100 three significant figures.
Answer:
525 Bq
Explanation:
The decay rate is directly proportional to the amount of radioisotope, so we can use the half-life equation:
A = A₀ (½)^(t / T)
A is the final amount
A₀ is the initial amount,
t is the time,
T is the half life
A = (8400 Bq) (½)^(18.0 min / 4.50 min)
A = (8400 Bq) (½)^4
A = (8400 Bq) (1/16)
A = 525 Bq
Answer and Explanation:
The aluminum is more productive in the absorption and heat transfer to other particles. It instantly converts heat absorbed from the environment into the atmosphere when removed from the oven, enabling us to operate with it faster than the pie that takes much longer to convert heat to the environment.
So this is the reason for pie to be the dangerously hot
Newton’s 2nd law
———
Newton's second law states that the acceleration of an object is directly related to the force on it, and inversely related to the mass of the object. You need more force to move or stop an object with a lot of mass (or inertia) than you need for an object with less mass. .