1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elis [28]
3 years ago
14

Simplify (3x-8)+(2x+5)-(4x-8)

Mathematics
1 answer:
hoa [83]3 years ago
5 0

Answer:

\large\boxed{(3x-8)+(2x+5)-(4x-8)=x+5}

Step-by-step explanation:

(3x-8)+(2x+5)-(4x-8)\\\\=3x-8+2x+5-4x-(-8)\\\\=3x-8+2x+5-4x+8\qquad\text{combine like terms}\\\\=(3x+2x-4x)+(-8+5+8)\\\\=x+5

You might be interested in
For any triangle ABC note down the sine and cos theorems ( sinA/a= sinB/b etc..)
SCORPION-xisa [38]

Answer:

Step-by-step explanation:

Law of sines is:

(sin A) / a = (sin B) / b = (sin C) / c

Law of cosines is:

c² = a² + b² − 2ab cos C

Note that a, b, and c are interchangeable, so long as the angle in the cosine corresponds to the side on the left of the equation (for example, angle C is opposite of side c).

Also, angles of a triangle add up to 180° or π.

(i) sin(B−C) / sin(B+C)

Since A+B+C = π, B+C = π−A:

sin(B−C) / sin(π−A)

Using angle shift property:

sin(B−C) / sin A

Using angle sum/difference identity:

(sin B cos C − cos B sin C) / sin A

Distribute:

(sin B cos C) / sin A − (cos B sin C) / sin A

From law of sines, sin B / sin A = b / a, and sin C / sin A = c / a.

(b/a) cos C − (c/a) cos B

From law of cosines:

c² = a² + b² − 2ab cos C

(c/a)² = 1 + (b/a)² − 2(b/a) cos C

2(b/a) cos C = 1 + (b/a)² − (c/a)²

(b/a) cos C = ½ + ½ (b/a)² − ½ (c/a)²

Similarly:

b² = a² + c² − 2ac cos B

(b/a)² = 1 + (c/a)² − 2(c/a) cos B

2(c/a) cos B = 1 + (c/a)² − (b/a)²

(c/a) cos B = ½ + ½ (c/a)² − ½ (b/a)²

Substituting:

[ ½ + ½ (b/a)² − ½ (c/a)² ] − [ ½ + ½ (c/a)² − ½ (b/a)² ]

½ + ½ (b/a)² − ½ (c/a)² − ½ − ½ (c/a)² + ½ (b/a)²

(b/a)² − (c/a)²

(b² − c²) / a²

(ii) a (cos B + cos C)

a cos B + a cos C

From law of cosines, we know:

b² = a² + c² − 2ac cos B

2ac cos B = a² + c² − b²

a cos B = 1/(2c) (a² + c² − b²)

Similarly:

c² = a² + b² − 2ab cos C

2ab cos C = a² + b² − c²

a cos C = 1/(2b) (a² + b² − c²)

Substituting:

1/(2c) (a² + c² − b²) + 1/(2b) (a² + b² − c²)

Common denominator:

1/(2bc) (a²b + bc² − b³) + 1/(2bc) (a²c + b²c − c³)

1/(2bc) (a²b + bc² − b³ + a²c + b²c − c³)

Rearrange:

1/(2bc) [a²b + a²c + bc² + b²c − (b³ + c³)]

Factor (use sum of cubes):

1/(2bc) [a² (b + c) + bc (b + c) − (b + c)(b² − bc + c²)]

(b + c)/(2bc) [a² + bc − (b² − bc + c²)]

(b + c)/(2bc) (a² + bc − b² + bc − c²)

(b + c)/(2bc) (2bc + a² − b² − c²)

Distribute:

(b + c)/(2bc) (2bc) + (b + c)/(2bc) (a² − b² − c²)

(b + c) + (b + c)/(2bc) (a² − b² − c²)

From law of cosines, we know:

a² = b² + c² − 2bc cos A

2bc cos A = b² + c² − a²

cos A = (b² + c² − a²) / (2bc)

-cos A = (a² − b² − c²) / (2bc)

Substituting:

(b + c) + (b + c)(-cos A)

(b + c)(1 − cos A)

From half angle formula, we can rewrite this as:

2(b + c) sin²(A/2)

(iii) (b + c) cos A + (a + c) cos B + (a + b) cos C

From law of cosines, we know:

cos A = (b² + c² − a²) / (2bc)

cos B = (a² + c² − b²) / (2ac)

cos C = (a² + b² − c²) / (2ab)

Substituting:

(b + c) (b² + c² − a²) / (2bc) + (a + c) (a² + c² − b²) / (2ac) + (a + b) (a² + b² − c²) / (2ab)

Common denominator:

(ab + ac) (b² + c² − a²) / (2abc) + (ab + bc) (a² + c² − b²) / (2abc) + (ac + bc) (a² + b² − c²) / (2abc)

[(ab + ac) (b² + c² − a²) + (ab + bc) (a² + c² − b²) + (ac + bc) (a² + b² − c²)] / (2abc)

We have to distribute, which is messy.  To keep things neat, let's do this one at a time.  First, let's look at the a² terms.

-a² (ab + ac) + a² (ab + bc) + a² (ac + bc)

a² (-ab − ac + ab + bc + ac + bc)

2a²bc

Repeating for the b² terms:

b² (ab + ac) − b² (ab + bc) + b² (ac + bc)

b² (ab + ac − ab − bc + ac + bc)

2ab²c

And the c² terms:

c² (ab + ac) + c² (ab + bc) − c² (ac + bc)

c² (ab + ac + ab + bc − ac − bc)

2abc²

Substituting:

(2a²bc + 2ab²c + 2abc²) / (2abc)

2abc (a + b + c) / (2abc)

a + b + c

8 0
3 years ago
scenario a: get $2,000 deposited into your bank account today, and $50 added each month for a year? make a f(×) function pls​
Dennis_Churaev [7]
Mathematics I hate mathematics
7 0
2 years ago
Use the given information to determine which lines, if any , are parallel
Ksenya-84 [330]

Answer:

both are parrallel lines

5 0
3 years ago
Are these similar and please explain why or why not.
krok68 [10]

Answer: no they are not simular and the reason for this is because not only are one of the sides off but one of the x values on the first one is not equal.

Step-by-step explanation:

I hope this helps have a good day

5 0
2 years ago
Read 2 more answers
Mya wants to create a rectangular garden that will be 25 feet wide. She has 110 feet of
jok3333 [9.3K]

750 sq ft

Step-by-step explanation:

since the fencing is going around the perimeter, you have to have two sides with the width of 25 feet, you would use 50 feet of fencing for 2 of the sides. You will have 60 feet of fencing left, divided by 2 (length of the garden) = 30 feet long.

The area (length x width) or (25 x 30) = 750 sq ft of garden space. Draw a rectangle with 25 ft on two parallel sides and 30 ft on the other two sides and show these equation= 25 x 2= 50, 110 - 50 = 60

60 ÷ 2 = 30, 30 x 25 = 750

7 0
3 years ago
Other questions:
  • Turn 3.7105425043 into a fraction
    10·1 answer
  • Se eu adiciono uma pessoa no Whats, ai a foto dela aparece.
    13·1 answer
  • !!!10 POINTS!!!<br> How many sides does a regular decagon have?<br> А. 11<br> В. 8<br> C. 9<br> D.10
    14·2 answers
  • A rectangle has width w inches and height h inches, where the width is twice the height. Both w and h are functions of time t, m
    8·1 answer
  • The perimeter of a rectangle with a width x and a length that is 3 times the width
    13·1 answer
  • If 4,250 pesos is equivalent to $250, how many pesos is equivalent to $25?
    10·2 answers
  • 2X plus 7 for x equals five
    11·1 answer
  • Look at photo for the question
    12·2 answers
  • Find the greatest common factor and the least common multiple of 16 and 20. The prime factorizations of each number are given.
    10·1 answer
  • What is the distance between the points -1,-3) and (-1,43)? I think I'll die if I don't get the answer soon​
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!