Answer: The minimum kinetic energy Kmin is 1.3 × 10^-13 J
Explanation: Please see the attachments below
Answer:
This equation is based on twin paradox - a phenomena where one of the twin travels to space at a speed close to speed of light and the other remains on earth. the twin from the space on return discovers that the one on earth age faster.
Solution:
= 10 years
v = 0.8c
c = speed of light in vacuum
The problem can be solved by time dilation equation:
(1)
where,
t = time observed from a different inertial frame
Now, using eqn (1), we get:

t = 16.67 years
The age of the twin on spaceship according to the one on earth = 25+16.67 =41.66 years
Escape velocity describes its speed. It becomes a satellite instead of falling back to earth because as it falls under Earth’s gravity the Earth has moved so the satellite falls around the planet instead of down to the ground.
Answer:
B.
It will be greater than 10 J.
Explanation:
The total mechanical energy of an object is the sum of its potential energy (PE) and its kinetic energy (KE):
E = PE + KE
According to the law of conservation of energy, when there are no frictional forces on an object, its mechanical energy is conserved.
The potential energy PE is the energy due to the position of the object: the highest the object above the ground, the highest its PE.
The kinetic energy KE is the energy due to the motion of the object: the highest its speed, the largest its KE.
Here at the beginning, when it is at the top of the roof, the baseball has:
PE = 120 J
KE = 10 J
So the total energy is
E = 120 + 10 = 130 J
As the ball falls down, its potential energy decreases, since its height decreases; as a result, since the total energy must remain constant, its kinetic energy increases (as its speed increases).
Therefore, when the ball reaches the ground, its kinetic energy must be greater than 10 J.
The is true because I said so