Answer:
The mechanical advantage is 3 to 1
Explanation:
A frictionless pulley with three support ropes carries equal tension on each of the ropes thus;
Tension in each pulley rope = T
Total tension in the 3 ropes = 3 × T = 3·T
Direction of the tension forces on each rope = Unidirectional
Total force provided by the 3 ropes = 3·T
Therefore, a force, T, applied at the end of the rope will result in a lifting force of 3·T
Hence, the mechanical advantage = 3·T to T which is presented as follows;

The mechanical advantage = 3 to 1.
Answer: 24 pA
Explanation:
As pure silicon is a semiconductor, the resistivity value is strongly dependent of temperature, as the main responsible for conductivity, the number of charge carriers (both electrons and holes) does.
Based on these considerations, we found that at room temperature, pure silicon resistivity can be approximated as 2.1. 10⁵ Ω cm.
The resistance R of a given resistor, is expressed by the following formula:
R = ρ L / A
Replacing by the values for resistivity, L and A, we have
R = 2.1. 10⁵ Ω cm. (10⁴ μm/cm). 50 μm/ 0.5 μm2
R = 2.1. 10¹¹ Ω
Assuming that we can apply Ohm´s Law, the current that would pass through this resistor for an applied voltage of 5 V, is as follows:
I = V/R = 5 V / 2.1.10¹¹ Ω = 2.38. 10⁻¹¹ A= 24 pA
Answer:
modern vehicles are made to crunch up a little bit so they that absorbe some of the impact instead of you
Explanation:
Answer:
835,175.68W
Explanation:
Calculation to determine the required power input to the pump
First step is to calculate the power needed
Using this formula
P=V*p*g*h
Where,
P represent power
V represent Volume flow rate =0.3 m³/s
p represent brine density=1050 kg/m³
g represent gravity=9.81m/s²
h represent height=200m
Let plug in the formula
P=0.3 m³/s *1050 kg/m³*9.81m/s² *200m
P=618,030 W
Now let calculate the required power input to the pump
Using this formula
Required power input=P/μ
Where,
P represent power=618,030 W
μ represent pump efficiency=74%
Let plug in the formula
Required power input=618,030W/0.74
Required power input=835,175.68W
Therefore the required power input to the pump will be 835,175.68W