1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yawa3891 [41]
4 years ago
13

A rigid 14-L vessel initially contains a mixture of liquid water and vapor at 100°C with 12.3 percent quality. The mixture is th

en heated until its temperature is 180°C. The final state is superheated water and the internal energy at this state should be obtained by interpolation. Calculate the heat transfer required for this process. Use data from the steam tables.
Engineering
2 answers:
tigry1 [53]4 years ago
7 0

Answer:

Q = 65.388 KJ

Explanation:

To calculate the heat required for the given process Q, we recall the energy balance equation.

Therefore, : Q = Δ U = m (u₂ - u₁) ..................equation (1)

We should note that there are no kinetic or potential energy change so the heat input in the system is converted only to internal energy.

Therefore, we will start the equation with the mass of the water (m) using given the initial percentage quality as x₁ = 0.123 and initial temperature t₁ = 100⁰c , we can them determine the initial specific volume v₁ of the mixture. For the calculation, we will also need the specific volume of liquid vₙ  = 0.001043m³/kg and water vapour (vₐ) = 1.6720m³/kg

Therefore, u₁ = vₙ + x₁ . ( vₐ - vₙ)

                   u₁ = 0.001043m³/kg + 0.123 . ( 1.6720m³/kg - 0.001043m³/kg)

                   u₁ = 0.2066m³/kg

Moving forward, the mass of the vapor can then be calculated using the given volume of tank V = 14 L but before the calculation, we need to convert the volume to from liters to m³.

Therefore, V = 14L . 1m² / 1000L = 0.014 m³

Hence, m = V / u₁

                 0.014m³ / 0.2066 m³/kg

              m = 0. 0677 kg

Also, the initial specific internal energy u₁ can be calculated using the given the initial given quality of x₁ , the specific internal energy of liquid water vₐ = 419.06 kj / kg and the specific internal energy of evaporation vₐₙ = 2087.0 kj/kg.

Therefore, u₁ = vₐ + x₁ . vₐₙ

                   u₁ = 419.06 kj / kg + 0.123  .  2087.0 kj/kg

                    u₁ = 675.76 kj/kg

For the final specific internal energy u₂, we first need to calculate the final quality of the mixture x₂ . The tank is rigid meaning the volume does not change and it is also closed meaning the mass does not change.from this, we can conclude the the specific volume also does not change during the process u₁ = u₂. This allows us to use the given final temperature T₂ = 180⁰c to determine the final quality x₂ of the mixture. for the calculation, we will also need the specific volume of liquid vₙ=0.001091m³/kg and vapor vₐ =  0.39248m³/kg

Hence, x₂ = u₂ - vₙ / uₐ

x₂ = 0.2066 m³/kg - 0.001091m³/kg / 0.39248m³/kg

x₂ = 0.524

Moving forward to calculate the final internal energy u₂, we have :

u₂ = vₙ + x₂ . vₙₐ

u₂ = 631.66 kj/kg + 0.524  . 1927.4 kj/kg

u₂ = 1641.62 kj/kg

We now return to equation (1) to plug in the values generated thus far

Q = m (u₂ - u₁)

0. 0677 kg ( 1641.62 kj/kg - 675.76 kj/kg)

Q = 65.388KJ

Troyanec [42]4 years ago
6 0

Answer:

98.13kJ

Explanation:

Given that;

The rigid 10-L vessel initially contains a mixture of liquid water & vapor at

T_1 =100^0C\\T_2 = 180^0C

We are to calculate the heat transfer required during the process by obtaining our data from the steam tables.

In order to do that, let start with our Energy Balance

So, Energy Balance for closed rigid tank system is given as:

\delta E_{system} = E_{in} - E_{out}

Since the K.E and P.E are insignificant;

∴ K.E = P.E = 0

Q_{in}= \delta U + W\\Q_{in} = m(u_2-u_1)+ W

Where;

m = mass flow rate of the mixture

(u_2-u_1) = corresponding change in the internal energy at state point 2 and 1

However, since we are informed that the vessel is rigid, then there is no work done in the system, then W turn out to be equal to zero .i,e

W = 0

we have our above equation re-written as:

Q_{in}= m (u_2-u_1)+0\\

Q_{in}= m(u_2-u_1)

We were told to obtain our data from the steam table, so were going to do just that

∴  At inlet temperature T_1 = 100^0C, the given quality of mixture of liquid water and vapor (x_1) = 123% = 0.123

Using the equation:

v_1 = v_f + x_1v_{fg}\\v_1 = v_f + x_1(v_g-v_f)

where;

v_1 = specific volume at state 1

v_f = specific volume of the liquid

v_g = specific volume of the liquid vapor mixture

The above data from the steam table is given as;

v_f  = 0.001043 m³/kg

v_g = 1.6720 m³/kg

so; we have

v_1 = 0.001043 + 0.123(1.6720-0.001043)

v_1 = 0.001043+0.123(1.670957)

v_1 =0.001043+0.205527711

v_1= 0.206570711m^3/kg

v_1=0.2065m^3/kg

At  T_1 = 100°C and x_1=0.123;

the following steam data from the tables were still obtained for the internal energy; which is given as:

Internal Energy (u_1) at the state 1

u_1= u_f + xu_{fg}

where;

specific internal energy of the liquid  (u_f)  = 419.06 kJ/kg

The specific internal energy of the liquid vapor mixture (u_{fg}) = 2087.0 kJ/kg

∴ since ; u_1= u_f + xu_{fg}

(u_1)  = 419.06 + (0.123 × 2087.0)

(u_1)  = 675.761 kJ/kg

As the tank is rigid, so as the volume which is kept constant:

v_2=v_1\\=0.2065 m^3/kg

Now, let take a look at when T_2 = 180^0C from the data in the steam tables

Specific volume of the liquid (v_f) = 0.00113 m³/kg

specific volume of the liquid vapor mixture (v_g) = 0.19384 m³/kg

The quality of the mixture at the final state 2 can be determined  by using the  equation shown below:

v_2=v_f+x_2v_{fg}

x_2=\frac{v_2-v_f}{v_{fg}}

x_2=\frac{v_2-v_f}{v_g-v_f}

x_2=\frac{0.2065-0.00113}{0.19384-0.00113}

x_2=\frac{0.20537}{0.19271}

    = 1.0657

From our usual steam table; we still obtained data for the Internal Energy when T_2=180^0C

Specific internal energy of the liquid (u_f) = 761.92 kJ/kg

Specific internal energy of the liquid vapor mixture u_{fg} = 1820.88 kJ/kg

Calculating the internal energy at finsl state point 2 ; we have:

u_2=u_f+u_{fg}

= 761.92 + (1.0657 × 1820.88)

= 761.92 + 1940.511816

= 2702.431816

u_2 ≅ 2702.43 kJ/kg

Furthermore, let us calculate the mass in the system; we have:

m= \frac{V_1}{v_1}

where V₁ = the volume 10 - L given by the system and v₁ = specific volume at state 1 as 0.2065

V₁ = the volume 10 - L = 10  × ( 0.001 m³/L)

v₁ = 0.2065

∴

mass (m) =  \frac{10(0.001m^3/L)}{0.2065}

= 0.04842 kg

Now, we gotten all we nee do calculate for the heat transfer that is required during the process:

Q_{in}= m(u_2-u_1)

Q_{in}= 0.04842(2702.43-675.761)

Q_{in}= 0.04842(2026.669)

Q_{in}= 98.13 kJ

Therefore, the heat transfer that is required during the process = 98.13 kJ

There you have it!, I hope this really helps alot!

You might be interested in
Define the terms marker
Lesechka [4]
A marker is a pen with a thick tip made of felt, which is used for drawing and for coloring things.
7 0
3 years ago
The minimum fresh air requirement of a residential building is specified to be 0.35 air changes per hour (ASHRAE, Standard 62, 1
Thepotemich [5.8K]

Answer:

a) The flow capacity of the fan is 3150 L/min

d) the minimum diameter is 0.11 m

Explanation:

given data:

A = area of residence = 200 m²

h = height of building = 2.7 m

Percentage of air that must be replaced by fresh air is 35%

v = velocity of air in the duct = 5.5 m/s

a) The volume of the entire building is:

Volume=2.7*200=540m^{3}

The flow capacity of the fan is equal to:

Flow=\frac{0.35*540}{60} =3.15m^{3} /min

Flow=3.15\frac{m^{3} }{min} *\frac{1000L}{1m^{3}  } =3150L/min

b) The volume flow rate of fresh air is equal to:

Flow=\frac{\pi *d^{2} }{4} V\\d=\sqrt{\frac{4*Flow}{\pi V} } =\sqrt{\frac{4*3.15}{\pi *5.5*60} } =0.11m

6 0
4 years ago
A discrete-time LTI system H has input x[n] and output y[n] related by the linear constant coefficient difference equation y[n]
Molodets [167]

Answer:

See explaination and attachment

Explanation:

Please kindly check attachment for the step by step solution of the given problem.

Have the solution as an attachment.

4 0
3 years ago
When your complex reaction time is compromised by alcohol, an impaired person's ability to respond to emergency or unanticipated
babunello [35]

Answer:

decreased

Explanation:

when impaired you react slower then you would sober.

3 0
3 years ago
Your department's laser printer recently began printing a vertical black line near the edge of every printed page. What should y
WINSTONCH [101]

Answer:

Replace the toner cartridge

Explanation:

solution

when laser printer  print black color liner vertical line print it is  very frustrating  that condition  nearly empty toner cartridge

but first we clean the corona wire for that color line

and Reinstall the toner cartridges after Shake the toner cartridge side to side

if problem not solve than Clean the drum unit

and finally if not solve change the toner cartridge

so as that our problem will be resolve

5 0
3 years ago
Other questions:
  • A 7-cm diameter horizontal pipe connected to the side of a tank at 4 m below the water surface in the tank discharges water to t
    6·1 answer
  • Refrigerant 22 undergoes a constant-pressure process within a piston–cylinder assembly from saturated vapor at 3.5 bar to a fina
    8·1 answer
  • Create a document that includes a constructor function named Company in the document head area. Include four properties in the C
    7·1 answer
  • A cylindrical specimen of a metal alloy 48.8 mm long and 9.09 mm in diameter is stressed in tension. A true stress of 327 MPa ca
    5·1 answer
  • A 3/8-16 UNC nut and bolt are used to assemble steel plates. The clearance holes in the plates are 7/16 in. The plates are clamp
    13·1 answer
  • A segment of a roadway has a free flow speed of 45 mph and a jam density of 25 ft per vehicle. Determine the maximum flow and at
    12·1 answer
  • When a retaining structure moves towards the soil backfill, the stress condition is called:__________.
    8·1 answer
  • What is the need to achieve population inversion​
    7·1 answer
  • Two HVAC/R technicians are discussing the soldering of copper pipes. Technician A says that when soldering, it's important to ap
    14·1 answer
  • A set of drawings for a building usually includes plan views of the site (lot), the floor layout, and the ____.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!