1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yawa3891 [41]
3 years ago
13

A rigid 14-L vessel initially contains a mixture of liquid water and vapor at 100°C with 12.3 percent quality. The mixture is th

en heated until its temperature is 180°C. The final state is superheated water and the internal energy at this state should be obtained by interpolation. Calculate the heat transfer required for this process. Use data from the steam tables.
Engineering
2 answers:
tigry1 [53]3 years ago
7 0

Answer:

Q = 65.388 KJ

Explanation:

To calculate the heat required for the given process Q, we recall the energy balance equation.

Therefore, : Q = Δ U = m (u₂ - u₁) ..................equation (1)

We should note that there are no kinetic or potential energy change so the heat input in the system is converted only to internal energy.

Therefore, we will start the equation with the mass of the water (m) using given the initial percentage quality as x₁ = 0.123 and initial temperature t₁ = 100⁰c , we can them determine the initial specific volume v₁ of the mixture. For the calculation, we will also need the specific volume of liquid vₙ  = 0.001043m³/kg and water vapour (vₐ) = 1.6720m³/kg

Therefore, u₁ = vₙ + x₁ . ( vₐ - vₙ)

                   u₁ = 0.001043m³/kg + 0.123 . ( 1.6720m³/kg - 0.001043m³/kg)

                   u₁ = 0.2066m³/kg

Moving forward, the mass of the vapor can then be calculated using the given volume of tank V = 14 L but before the calculation, we need to convert the volume to from liters to m³.

Therefore, V = 14L . 1m² / 1000L = 0.014 m³

Hence, m = V / u₁

                 0.014m³ / 0.2066 m³/kg

              m = 0. 0677 kg

Also, the initial specific internal energy u₁ can be calculated using the given the initial given quality of x₁ , the specific internal energy of liquid water vₐ = 419.06 kj / kg and the specific internal energy of evaporation vₐₙ = 2087.0 kj/kg.

Therefore, u₁ = vₐ + x₁ . vₐₙ

                   u₁ = 419.06 kj / kg + 0.123  .  2087.0 kj/kg

                    u₁ = 675.76 kj/kg

For the final specific internal energy u₂, we first need to calculate the final quality of the mixture x₂ . The tank is rigid meaning the volume does not change and it is also closed meaning the mass does not change.from this, we can conclude the the specific volume also does not change during the process u₁ = u₂. This allows us to use the given final temperature T₂ = 180⁰c to determine the final quality x₂ of the mixture. for the calculation, we will also need the specific volume of liquid vₙ=0.001091m³/kg and vapor vₐ =  0.39248m³/kg

Hence, x₂ = u₂ - vₙ / uₐ

x₂ = 0.2066 m³/kg - 0.001091m³/kg / 0.39248m³/kg

x₂ = 0.524

Moving forward to calculate the final internal energy u₂, we have :

u₂ = vₙ + x₂ . vₙₐ

u₂ = 631.66 kj/kg + 0.524  . 1927.4 kj/kg

u₂ = 1641.62 kj/kg

We now return to equation (1) to plug in the values generated thus far

Q = m (u₂ - u₁)

0. 0677 kg ( 1641.62 kj/kg - 675.76 kj/kg)

Q = 65.388KJ

Troyanec [42]3 years ago
6 0

Answer:

98.13kJ

Explanation:

Given that;

The rigid 10-L vessel initially contains a mixture of liquid water & vapor at

T_1 =100^0C\\T_2 = 180^0C

We are to calculate the heat transfer required during the process by obtaining our data from the steam tables.

In order to do that, let start with our Energy Balance

So, Energy Balance for closed rigid tank system is given as:

\delta E_{system} = E_{in} - E_{out}

Since the K.E and P.E are insignificant;

∴ K.E = P.E = 0

Q_{in}= \delta U + W\\Q_{in} = m(u_2-u_1)+ W

Where;

m = mass flow rate of the mixture

(u_2-u_1) = corresponding change in the internal energy at state point 2 and 1

However, since we are informed that the vessel is rigid, then there is no work done in the system, then W turn out to be equal to zero .i,e

W = 0

we have our above equation re-written as:

Q_{in}= m (u_2-u_1)+0\\

Q_{in}= m(u_2-u_1)

We were told to obtain our data from the steam table, so were going to do just that

∴  At inlet temperature T_1 = 100^0C, the given quality of mixture of liquid water and vapor (x_1) = 123% = 0.123

Using the equation:

v_1 = v_f + x_1v_{fg}\\v_1 = v_f + x_1(v_g-v_f)

where;

v_1 = specific volume at state 1

v_f = specific volume of the liquid

v_g = specific volume of the liquid vapor mixture

The above data from the steam table is given as;

v_f  = 0.001043 m³/kg

v_g = 1.6720 m³/kg

so; we have

v_1 = 0.001043 + 0.123(1.6720-0.001043)

v_1 = 0.001043+0.123(1.670957)

v_1 =0.001043+0.205527711

v_1= 0.206570711m^3/kg

v_1=0.2065m^3/kg

At  T_1 = 100°C and x_1=0.123;

the following steam data from the tables were still obtained for the internal energy; which is given as:

Internal Energy (u_1) at the state 1

u_1= u_f + xu_{fg}

where;

specific internal energy of the liquid  (u_f)  = 419.06 kJ/kg

The specific internal energy of the liquid vapor mixture (u_{fg}) = 2087.0 kJ/kg

∴ since ; u_1= u_f + xu_{fg}

(u_1)  = 419.06 + (0.123 × 2087.0)

(u_1)  = 675.761 kJ/kg

As the tank is rigid, so as the volume which is kept constant:

v_2=v_1\\=0.2065 m^3/kg

Now, let take a look at when T_2 = 180^0C from the data in the steam tables

Specific volume of the liquid (v_f) = 0.00113 m³/kg

specific volume of the liquid vapor mixture (v_g) = 0.19384 m³/kg

The quality of the mixture at the final state 2 can be determined  by using the  equation shown below:

v_2=v_f+x_2v_{fg}

x_2=\frac{v_2-v_f}{v_{fg}}

x_2=\frac{v_2-v_f}{v_g-v_f}

x_2=\frac{0.2065-0.00113}{0.19384-0.00113}

x_2=\frac{0.20537}{0.19271}

    = 1.0657

From our usual steam table; we still obtained data for the Internal Energy when T_2=180^0C

Specific internal energy of the liquid (u_f) = 761.92 kJ/kg

Specific internal energy of the liquid vapor mixture u_{fg} = 1820.88 kJ/kg

Calculating the internal energy at finsl state point 2 ; we have:

u_2=u_f+u_{fg}

= 761.92 + (1.0657 × 1820.88)

= 761.92 + 1940.511816

= 2702.431816

u_2 ≅ 2702.43 kJ/kg

Furthermore, let us calculate the mass in the system; we have:

m= \frac{V_1}{v_1}

where V₁ = the volume 10 - L given by the system and v₁ = specific volume at state 1 as 0.2065

V₁ = the volume 10 - L = 10  × ( 0.001 m³/L)

v₁ = 0.2065

∴

mass (m) =  \frac{10(0.001m^3/L)}{0.2065}

= 0.04842 kg

Now, we gotten all we nee do calculate for the heat transfer that is required during the process:

Q_{in}= m(u_2-u_1)

Q_{in}= 0.04842(2702.43-675.761)

Q_{in}= 0.04842(2026.669)

Q_{in}= 98.13 kJ

Therefore, the heat transfer that is required during the process = 98.13 kJ

There you have it!, I hope this really helps alot!

You might be interested in
An electrochemical cell is composed of pure nickel and pure iron electrodes immersed in solutions of their divalent ions. If the
xenn [34]

Answer:C  0.12 V

Explanation:

Given

Concentration of Fe^{2+} M_1=0.40 M

Concentration of Ni^{2+} M_2=0.002 M

Standard Potential for Ni and Fe are V_2=-0.25 V  and V_1=-0.44 V

\Delta V=V_2-V_1-\frac{0.0592}{2}\log (\frac{M_1}{M_2})

\Delta V=-0.25-(-0.44)-\frac{0.0592}{2}\log (\frac{0.4}{0.002})

\Delta V=0.12\ V

7 0
3 years ago
A _____ satellite system employs many satellites that are spaced so that, from any point on the Earth at any time, at least one
Wittaler [7]

Answer:

d. low earth orbit (LEO)

Explanation:

This type of satellites form a constellation deployed as a series of “necklaces” in such a way that at any time, at least one satellite is visible by a receiver antenna, compensating the movement due to the earth rotation.

Opposite to that, a geostationary satellite is at an altitude that makes it  like a fixed point over the Earth´s equator, rotating synchronously with the Earth, so it is always visible in a given area.

3 0
3 years ago
Please help me with this. Plzzz.
Drupady [299]

Answer:

450,000m = 450km = 4.5E5

32,600,000W = 32.6MW = 3.26E7

59,700,000,000cal = 59.7Gcal = 5.97E10

0.000000083s = 83ns = 8.3E-8

35,000Ω = 35kΩ = 3.5E4

Explanation:

Giga   = 1,000,000,000

Mega = 1,000,000

kilo     = 1,000

unit    = 1

deci   = .1

centi  = .01

milli    = .001

micro = .000001

nano = .0000000001

pico  = .000000000001

You should be able to look at these and convert between them in seconds if you want to pursue anything in engineering.

7 0
3 years ago
The design specifications of a 1.2-m long solid circular transmission shaft require that the angle of twist of the shaft not exc
Verizon [17]

Answer:

c = 18.0569 mm

Explanation:

Strategy  

We will find required diameter based on angle of twist and based on shearing stress. The larger value will govern.  

Given Data  

Applied Torque

T = 750 N.m

Length of shaft

L = 1.2 m

Modulus of Rigidity

G = 77.2 GPa

Allowable Stress

г = 90 MPa

Maximum Angle of twist  

∅=4°

∅=4*\pi/180

∅=69.813 *10^-3 rad

Required Diameter based on angle of twist  

∅=TL/GJ

∅=TL/G*\pi/2*c^4

∅=2TL/G*\pi*c^4

c=\sqrt[4]{2TL/\pi G }∅

c=18.0869 *10^-3 rad

Required Diameter based on shearing stress

г = T/J*c

г = [T/(J*\pi/2*c^4)]*c

г =[2T/(J*\pi*c^4)]*c

c=17.441*10^-3 rad

Minimum Radius Required  

We will use larger of the two values  

c= 18.0569 x 10^-3 m  

c = 18.0569 mm  

3 0
3 years ago
Driving Distraction Brainstorming Session
Leto [7]

texting, phone calls, putting on makeup, brushing hair, movies playing in car, loud music, children, and that's pretty much all I could think of

please give <u>BRAINLIEST ANSWER └[T‸T]┘</u>

5 0
3 years ago
Other questions:
  • A cable in a motor hoist must lift a 700-lb engine. The steel cable is 0.375in. in diameter. What is the stress in the cable?
    12·1 answer
  • The fluid-conditioning components of hydraulic-powered equipment provide fluid that is clean and maintained at an acceptable ope
    6·1 answer
  • Some connecting rods have ____ to help lubricate the cylinder wall or piston pin.
    12·2 answers
  • Using only the sequential operations described in Section 2.2.2, write an algorithm that gets two values: the price for item A a
    5·1 answer
  • A train which is traveling at 70 mi/hr applies its brakes as it reaches point A and slows down with a constant deceleration. Its
    12·1 answer
  • The two shafts of a Hooke’s coupling have their axes inclined at 20°.The shaft A revolves at a uniform speed of 1000 rpm. The sh
    5·1 answer
  • According to the article, what is one reason why commercial carmakers aim to develop driverless technology?
    9·1 answer
  • IF A CAR AHEAD OF YOU HAS STOPPED AT A CROSSWALK, YOU SHOULD:
    12·1 answer
  • How the LED (light emitting diode) works?​
    8·2 answers
  • 7. True or False? The positive effects of a new<br> technology always outweigh its negative effects.
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!