1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yawa3891 [41]
3 years ago
13

A rigid 14-L vessel initially contains a mixture of liquid water and vapor at 100°C with 12.3 percent quality. The mixture is th

en heated until its temperature is 180°C. The final state is superheated water and the internal energy at this state should be obtained by interpolation. Calculate the heat transfer required for this process. Use data from the steam tables.
Engineering
2 answers:
tigry1 [53]3 years ago
7 0

Answer:

Q = 65.388 KJ

Explanation:

To calculate the heat required for the given process Q, we recall the energy balance equation.

Therefore, : Q = Δ U = m (u₂ - u₁) ..................equation (1)

We should note that there are no kinetic or potential energy change so the heat input in the system is converted only to internal energy.

Therefore, we will start the equation with the mass of the water (m) using given the initial percentage quality as x₁ = 0.123 and initial temperature t₁ = 100⁰c , we can them determine the initial specific volume v₁ of the mixture. For the calculation, we will also need the specific volume of liquid vₙ  = 0.001043m³/kg and water vapour (vₐ) = 1.6720m³/kg

Therefore, u₁ = vₙ + x₁ . ( vₐ - vₙ)

                   u₁ = 0.001043m³/kg + 0.123 . ( 1.6720m³/kg - 0.001043m³/kg)

                   u₁ = 0.2066m³/kg

Moving forward, the mass of the vapor can then be calculated using the given volume of tank V = 14 L but before the calculation, we need to convert the volume to from liters to m³.

Therefore, V = 14L . 1m² / 1000L = 0.014 m³

Hence, m = V / u₁

                 0.014m³ / 0.2066 m³/kg

              m = 0. 0677 kg

Also, the initial specific internal energy u₁ can be calculated using the given the initial given quality of x₁ , the specific internal energy of liquid water vₐ = 419.06 kj / kg and the specific internal energy of evaporation vₐₙ = 2087.0 kj/kg.

Therefore, u₁ = vₐ + x₁ . vₐₙ

                   u₁ = 419.06 kj / kg + 0.123  .  2087.0 kj/kg

                    u₁ = 675.76 kj/kg

For the final specific internal energy u₂, we first need to calculate the final quality of the mixture x₂ . The tank is rigid meaning the volume does not change and it is also closed meaning the mass does not change.from this, we can conclude the the specific volume also does not change during the process u₁ = u₂. This allows us to use the given final temperature T₂ = 180⁰c to determine the final quality x₂ of the mixture. for the calculation, we will also need the specific volume of liquid vₙ=0.001091m³/kg and vapor vₐ =  0.39248m³/kg

Hence, x₂ = u₂ - vₙ / uₐ

x₂ = 0.2066 m³/kg - 0.001091m³/kg / 0.39248m³/kg

x₂ = 0.524

Moving forward to calculate the final internal energy u₂, we have :

u₂ = vₙ + x₂ . vₙₐ

u₂ = 631.66 kj/kg + 0.524  . 1927.4 kj/kg

u₂ = 1641.62 kj/kg

We now return to equation (1) to plug in the values generated thus far

Q = m (u₂ - u₁)

0. 0677 kg ( 1641.62 kj/kg - 675.76 kj/kg)

Q = 65.388KJ

Troyanec [42]3 years ago
6 0

Answer:

98.13kJ

Explanation:

Given that;

The rigid 10-L vessel initially contains a mixture of liquid water & vapor at

T_1 =100^0C\\T_2 = 180^0C

We are to calculate the heat transfer required during the process by obtaining our data from the steam tables.

In order to do that, let start with our Energy Balance

So, Energy Balance for closed rigid tank system is given as:

\delta E_{system} = E_{in} - E_{out}

Since the K.E and P.E are insignificant;

∴ K.E = P.E = 0

Q_{in}= \delta U + W\\Q_{in} = m(u_2-u_1)+ W

Where;

m = mass flow rate of the mixture

(u_2-u_1) = corresponding change in the internal energy at state point 2 and 1

However, since we are informed that the vessel is rigid, then there is no work done in the system, then W turn out to be equal to zero .i,e

W = 0

we have our above equation re-written as:

Q_{in}= m (u_2-u_1)+0\\

Q_{in}= m(u_2-u_1)

We were told to obtain our data from the steam table, so were going to do just that

∴  At inlet temperature T_1 = 100^0C, the given quality of mixture of liquid water and vapor (x_1) = 123% = 0.123

Using the equation:

v_1 = v_f + x_1v_{fg}\\v_1 = v_f + x_1(v_g-v_f)

where;

v_1 = specific volume at state 1

v_f = specific volume of the liquid

v_g = specific volume of the liquid vapor mixture

The above data from the steam table is given as;

v_f  = 0.001043 m³/kg

v_g = 1.6720 m³/kg

so; we have

v_1 = 0.001043 + 0.123(1.6720-0.001043)

v_1 = 0.001043+0.123(1.670957)

v_1 =0.001043+0.205527711

v_1= 0.206570711m^3/kg

v_1=0.2065m^3/kg

At  T_1 = 100°C and x_1=0.123;

the following steam data from the tables were still obtained for the internal energy; which is given as:

Internal Energy (u_1) at the state 1

u_1= u_f + xu_{fg}

where;

specific internal energy of the liquid  (u_f)  = 419.06 kJ/kg

The specific internal energy of the liquid vapor mixture (u_{fg}) = 2087.0 kJ/kg

∴ since ; u_1= u_f + xu_{fg}

(u_1)  = 419.06 + (0.123 × 2087.0)

(u_1)  = 675.761 kJ/kg

As the tank is rigid, so as the volume which is kept constant:

v_2=v_1\\=0.2065 m^3/kg

Now, let take a look at when T_2 = 180^0C from the data in the steam tables

Specific volume of the liquid (v_f) = 0.00113 m³/kg

specific volume of the liquid vapor mixture (v_g) = 0.19384 m³/kg

The quality of the mixture at the final state 2 can be determined  by using the  equation shown below:

v_2=v_f+x_2v_{fg}

x_2=\frac{v_2-v_f}{v_{fg}}

x_2=\frac{v_2-v_f}{v_g-v_f}

x_2=\frac{0.2065-0.00113}{0.19384-0.00113}

x_2=\frac{0.20537}{0.19271}

    = 1.0657

From our usual steam table; we still obtained data for the Internal Energy when T_2=180^0C

Specific internal energy of the liquid (u_f) = 761.92 kJ/kg

Specific internal energy of the liquid vapor mixture u_{fg} = 1820.88 kJ/kg

Calculating the internal energy at finsl state point 2 ; we have:

u_2=u_f+u_{fg}

= 761.92 + (1.0657 × 1820.88)

= 761.92 + 1940.511816

= 2702.431816

u_2 ≅ 2702.43 kJ/kg

Furthermore, let us calculate the mass in the system; we have:

m= \frac{V_1}{v_1}

where V₁ = the volume 10 - L given by the system and v₁ = specific volume at state 1 as 0.2065

V₁ = the volume 10 - L = 10  × ( 0.001 m³/L)

v₁ = 0.2065

∴

mass (m) =  \frac{10(0.001m^3/L)}{0.2065}

= 0.04842 kg

Now, we gotten all we nee do calculate for the heat transfer that is required during the process:

Q_{in}= m(u_2-u_1)

Q_{in}= 0.04842(2702.43-675.761)

Q_{in}= 0.04842(2026.669)

Q_{in}= 98.13 kJ

Therefore, the heat transfer that is required during the process = 98.13 kJ

There you have it!, I hope this really helps alot!

You might be interested in
When using fall arrest, free fall must be kept at or below how many feet
FromTheMoon [43]
6 feet
Explanation: A few extra feet of free fall can significantly increase the arresting force on the employee, possibly to the point of causing injury. Because of this, the free fall distance should be kept at a minimum, and, as required by the standard, in no case greater than 6 feet (1.8 m).
5 0
3 years ago
Which of the following refers to a full-scale version of a product used to validate performance?
kompoz [17]
I’m thinking it would be c sorry if it’s wrong .
4 0
3 years ago
Read 2 more answers
Consider a fan located in a 3 ft by 3 ft square duct. Velocities at various points at the outlet are measured, and the average f
natulia [17]

Answer:

minimum electric power consumption of the fan motor is 0.1437 Btu/s

Explanation:

given data

area = 3 ft by 3 ft

air density = 0.075 lbm/ft³

to find out

minimum electric power consumption of the fan motor

solution

we know that energy balance equation that is express as

E in - E out  = \frac{dE \ system}{dt}    ......................1

and at steady state  \frac{dE \ system}{dt} = 0

so we can say from equation 1

E in = E out

so

minimum power required is

E in = W = m \frac{V^2}{2} = \rho A V \frac{V^2}{2}  

put here value

E in =  \rho A V \frac{V^2}{2}  

E in =  0.075 *3*3* 22 \frac{22^2}{2}  

E in = 0.1437 Btu/s

minimum electric power consumption of the fan motor is 0.1437 Btu/s

5 0
3 years ago
A Rankine steam power plant is considered. Saturated water vapor enters a turbine at 8 MPa and exits at condenser at 10 kPa. The
Ray Of Light [21]

Answer:

0.31

126.23 kg/s

Explanation:

Given:-

- Fluid: Water

- Turbine: P3 = 8MPa , P4 = 10 KPa , nt = 85%

- Pump: Isentropic

- Net cycle-work output, Wnet = 100 MW

Find:-

- The thermal efficiency of the cycle

- The mass flow rate of steam

Solution:-

- The best way to deal with questions related to power cycles is to determine the process and write down the requisite properties of the fluid at each state.

First process: Isentropic compression by pump

       P1 = P4 = 10 KPa ( condenser and pump inlet is usually equal )

      h1 = h-P1 = 191.81 KJ/kg ( saturated liquid assumption )

       s1 = s-P1 = 0.6492 KJ/kg.K

       v1 = v-P1 = 0.001010 m^3 / kg

       

       P2 = P3 = 8 MPa( Boiler pressure - Turbine inlet )

       s2 = s1 = 0.6492 KJ/kg.K   .... ( compressed liquid )

- To determine the ( h2 ) at state point 2 : Pump exit. We need to determine the wok-done by pump on the water ( Wp ). So from work-done principle we have:

   

                           w_p = v_1*( P_2 - P_1 )\\\\w_p = 0.001010*( 8000 - 10 )\\\\w_p = 8.0699 \frac{KJ}{kg}

- From the following relation we can determine ( h2 ) as follows:

                          h2 = h1 + wp

                          h2 = 191.81 + 8.0699

                          h2 = 199.88 KJ/kg

                           

Second Process: Boiler supplies heat to the fluid and vaporize

- We have already evaluated the inlet fluid properties to the boiler ( pump exit property ).

- To determine the exit property of the fluid when the fluid is vaporized to steam in boiler ( super-heated phase ).

              P3 = 8 MPa

              T3 = ?  ( assume fluid exist in the saturated vapor phase )

              h3 = hg-P3 = 2758.7 KJ/kg

              s3 = sg-P3 = 5.7450 KJ/kg.K

- The amount of heat supplied by the boiler per kg of fluid to the water stream. ( qs ) is determined using the state points 2 and 3 as follows:

                          q_s = h_3 - h_2\\\\q_s = 2758.7 -199.88\\\\q_s = 2558.82 \frac{KJ}{kg}

Third Process: The expansion ( actual case ). Turbine isentropic efficiency ( nt ).

- The saturated vapor steam is expanded by the turbine to the condenser pressure. The turbine inlet pressure conditions are similar to the boiler conditions.

- Under the isentropic conditions the steam exits the turbine at the following conditions:

             P4 = 10 KPa

             s4 = s3 = 5.7450 KJ/kg.K ... ( liquid - vapor mixture phase )

             

- Compute the quality of the mixture at condenser inlet by the following relation:

                           x = \frac{s_4 - s_f}{s_f_g} \\\\x = \frac{5.745- 0.6492}{7.4996} \\\\x = 0.67947

- Determine the isentropic ( h4s ) at this state as follows:

                          h_4_s = h_f + x*h_f_g\\\\h_4_s = 191.81 + 0.67947*2392.1\\\\h_4_s = 1817.170187 \frac{KJ}{kg}        

- Since, we know that the turbine is not 100% isentropic. We will use the working efficiency and determine the actual ( h4 ) at the condenser inlet state:

                         h4 = h_3 - n_t*(h_3 - h_4_s ) \\\\h4 = 2758.7 - 0.85*(2758.7 - 181.170187 ) \\\\h4 = 1958.39965 \frac{KJ}{kg} \\

- We can now compute the work-produced ( wt ) due to the expansion of steam in turbine.

                        w_t = h_3 - h_4\\\\w_t = 2758.7-1958.39965\\\\w_t = 800.30034 \frac{KJ}{kg}

- The net power out-put from the plant is derived from the net work produced by the compression and expansion process in pump and turbine, respectively.

                       W_n_e_t = flow(m) * ( w_t - w_p )\\\\flow ( m ) = \frac{W_n_e_t}{w_t - w_p} \\\\flow ( m ) = \frac{100000}{800.30034-8.0699} \\\\flow ( m ) = 126.23 \frac{kg}{s}

Answer: The mass flow rate of the steam would be 126.23 kg/s

- The thermal efficiency of the cycle ( nth ) is defined as the ratio of net work produced by the cycle ( Wnet ) and the heat supplied by the boiler to the water ( Qs ):

                        n_t_h = \frac{W_n_e_t}{flow(m)*q_s} \\\\n_t_h = \frac{100000}{126.23*2558.82} \\\\n_t_h = 0.31

Answer: The thermal efficiency of the cycle is 0.31

       

   

7 0
4 years ago
What different tests did the team perform to come up with a workable design?
I am Lyosha [343]
They ran different shapes and materials through a wind tunnel to see which shape and material would decrease energy output so that it takes in equal COthan it puts out.
5 0
4 years ago
Other questions:
  • 1. Why is outside air mixed with return air?​
    6·1 answer
  • 11 Notează, în caiet, trăsăturile personajelor ce se pot
    13·1 answer
  • Tech A says that a gear set that has a drive gear with 9 teeth and a driven gear with 27 teeth has a gear ratio of 3:1. Tech B s
    7·1 answer
  • I don't understand this I am really bad at measurements
    12·2 answers
  • A 40 mph wind is blowing past your house and speeds up as it flows up and over the roof. If the elevation effects are negligible
    14·1 answer
  • The housing for a certain machinery product is made of two components, both aluminum castings. The larger component has the shap
    10·1 answer
  • Whats is the purpose of the stator winding​
    13·1 answer
  • The toughness of a material does what, when it's been heated?​
    7·1 answer
  • A system of organization, people activities, informations, and resources involved in supplying a productor or service to a custo
    5·2 answers
  • An American architect whose principles of building included consonance with the landscape was ____________________________.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!