Answer:
Iron has 5 unpaired electrons in Fe⁺³ state.
Explanation:
Iron having atomic number 26 has following electronic configuration in neutral state.
Fe = 1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d⁶
When Iron looses three electrons it attains +3 charge with following electronic configuration.
Fe⁺³ = 1s², 2s², 2p⁶, 3s², 3p⁶, 3d⁵
The five electrons in d-orbital exist in unpaired form as,
3(dz)¹, 3d(xz)¹, 3d(yz)¹, 3d(xy)¹, 3(dx²-y²)¹
<span>conductor because it conducts the electrons</span><span />
Answer:
a) yes, it was an hydrate
b) the number of waters of hydration, x = 6
Explanation:
a) yes it was an hydrate because the mass decreased after the process of dehydration which means removal of water thus some water molecules were present in the sample.
b) NiCl2. xH2O
mass if dehydrated NiCl2 = 2.3921 grams
mass of water in the hydrated sample = mass of hydrated - mass of dehydrated = 4.3872 - 2.3921 = 1.9951 g which represent the mass of water that was present in the hydrated sample.
NiCl2.xH2O
mole of dehydrated NiCl2 = m/Mm = 2.3921/129.5994 = 0.01846 mole
mole of water = m/Mm = 1.9951/18.02 = 0.11072 mole
Divide both by the smallest number of mole (which is for NiCl2) to find the coefficient of each
for NiCl2 = 0.01846/0.01846 = 1
for H2O = 0.11072/0.01846 = 5.9976 = 6
thus the hydrated sample was NiCl2. 6H2O
Thermal energy travels<span> by conduction, convection, and radiation. It occurs when a cooler and warmer object touches each other. </span>
Answer:
Freezing. When a liquid is cooled, the average energy of the molecules decreases. At some point, the amount of heat removed is great enough that the attractive forces between molecules draw the molecules close together, and the liquid freezes to a solid.
Note how temperature effects the motion of the atoms or molecules in a liquid. As the temperature of a solid, liquid or gas increases, the particles move more rapidly. As the temperature falls, the particles slow down. If a liquid is cooled sufficiently, it forms a solid.
<h3>I hope it helps you:)</h3>