This problem has two parts; the first one asking for the concentration of NaBr given both its mass and volume and the second one asking for its volume given both mass and concentration. The answers turn out to be 0.158 M and 211 mL.
<h3>Molarity</h3>
In chemistry, the use of units of concentration depends on both the substances to analyze and their amounts. In such a way, for molarity, one needs the following relationship between the moles of solute and volume of solution:

Thus, for the first part of the problem we first calculate the moles in 2.60 g of NaBr via its molar mass:

Next, we convert the 160. mL to L by dividing by 1000 in order to obtain 0.160 L to subsequently calculate the molarity:

Next, since the moles remain the same and for the second part we are asked for the volume given the concentration, one can solve for the volume so as to obtain:

That in milliliters turns out to be:

Learn more about molarity: brainly.com/question/10053901
Moles = mass / molar mass
molar mass of O2 is 32
therefore moles = 72/32
= 2.25 moles
Answer:
Water Cycle
- Earth is a truly unique in its abundance of water. Water is necessary to sustaining life on Earth, and helps tie together the Earth's lands, oceans, and atmosphere into an integrated system. Precipitation, evaporation, freezing and melting and condensation are all part of the hydrological cycle - a never-ending global process of water circulation from clouds to land, to the ocean, and back to the clouds.
- This cycling of water is intimately linked with energy exchanges among the atmosphere, ocean, and land that determine the Earth's climate and cause much of natural climate variability.
- The impacts of climate change and variability on the quality of human life occur primarily through changes in the water cycle. As stated in the National Research Council's report on Research Pathways for the Next Decade (NRC, 1999): "Water is at the heart of both the causes and effects of climate change."
<h2>Importance of the ocean in the water cycle</h2>
- The ocean plays a key role in this vital cycle of water.
- The ocean holds 97% of the total water on the planet; 78% of global precipitation occurs over the ocean, and it is the source of 86% of global evaporation.
- Besides affecting the amount of atmospheric water vapor and hence rainfall, evaporation from the sea surface is important in the movement of heat in the climate system.
- Water evaporates from the surface of the ocean, mostly in warm, cloud-free subtropical seas.
- This cools the surface of the ocean, and the large amount of heat absorbed the ocean partially buffers the greenhouse effect from increasing carbon dioxide and other gases.
- Water vapor carried by the atmosphere condenses as clouds and falls as rain, mostly in the ITCZ, far from where it evaporated, Condensing water vapor releases latent heat and this drives much of the the atmospheric circulation in the tropics.
- This latent heat release is an important part of the Earth’s heat balance, and it couples the planet’s energy and water cycles.
- The major physical components of the global water cycle include the evaporation from the ocean and land surfaces, the transport of water vapor by the atmosphere, precipitation onto the ocean and land surfaces, the net atmospheric transport of water from land areas to ocean, and the return flow of fresh water from the land back into the ocean.
- . The additional components of oceanic water transport are few, including the mixing of fresh water through the oceanic boundary layer, transport by ocean currents, and sea ice processes.
- On land the situation is considerably more complex, and includes the deposition of rain and snow on land; water flow in runoff; infiltration of water into the soil and groundwater; storage of water in soil, lakes and streams, and groundwater; polar and glacial ice; and use of water in vegetation and human activities.
- Illustration of the water cycle showing the ocean, land, mountains, and rivers returning to the ocean.
- Processes labeled include: precipitation, condensation, evaporation, evaportranspiration (from tree into atmosphere), radiative exchange, surface runoff, ground water and stream flow, infiltration, percolation and soil.
<span>Since these molecules are all non-polar, the only intermolecular force of attraction will be London dispersion forces. Since these increase by the size of the molecule, the boiling points will decrease in the same order:
Parafin > Heptadecane > hexane > 2,2-dimethylbutane > propane
For these two, hexane > 2,2-dimethylbutane, dispersion forces are greater in a molecule which is longer and unbranched compared to one which is branched and more compact.</span>
Compounds. They both have more than one element in them