Answer:
31.32 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²
Let us assume the height of the Disque hall is 50 m

In order to make the jump Superman's initial velocity must be greater than or equal to 31.32 m/s
Answer:
153.6 kN
Explanation:
The elastic constant k of the block is
k = E * A/l
k = 95*10^9 * 0.048*0.04/0.25 = 729.6 MN/m
0.12% of the original length is:
0.0012 * 0.25 m = 0.0003 m
Hooke's law:
F = x * k
Where x is the change in length
F = 0.0003 * 729.6*10^6 = 218.88 kN (maximum force admissible by deformation)
The compressive load will generate a stress of
σ = F / A
F = σ * A
F = 80*10^6 * 0.048 * 0.04 = 153.6 kN
The smallest admisible load is 153.6 kN
You already have the speed, now you need the time.
I will use the formula for speed which is S=D/T.
S=Speed D=Distance T=Time.
So here we have, 18m/s = 52m/T
we do 18 divided by 52 which would be .3461.
.3461 seconds is how long it took the stone to reach the water.
With the advent of the plastic balloon and the beginning of the unmanned ... That would lead to a more sophisticated ballast system that uses fine steel or iron
Pressure is the force per unit area. This means that the pressure a solid object exerts on another solid surface is its weight in newton’s divided by its area in square metres