The answer is D.<span>longitudinal</span>
This question can be solved by using the equations of motion.
a) The initial speed of the arrow is was "9.81 m/s".
b) It took the arrow "1.13 s" to reach a height of 17.5 m.
a)
We will use the second equation of motion to find out the initial speed of the arrow.

where,
vi = initial speed = ?
h = height = 35 m
t = time interval = 2 s
g = acceleration due to gravity = 9.81 m/s²
Therefore,

<u>vi = 9.81 m/s</u>
b)
To find the time taken by the arrow to reach 17.5 m, we will use the second equation of motion again.

where,
g = acceleration due to gravity = 9.81 m/s²
h = height = 17.5 m
vi = initial speed = 9.81 m/s
t = time = ?
Therefore,

solving this quadratic equation using the quadratic formula, we get:
t = -3.13 s (OR) t = 1.13 s
Since time can not have a negative value.
Therefore,
<u>t = 1.13 s</u>
Learn more about equations of motion here:
brainly.com/question/20594939?referrer=searchResults
The attached picture shows the equations of motion in the horizontal and vertical directions.
Answer:
The capacity for doing work.
Explanation:
It has the forms kinetic, potential, thermal, electric, nuclear or other forms of energy.
Answer: The correct option is (c.).
Explanation:
Mass of the cart A= 1.5 kg
Velocity of Cart A = 1.4 m/s towards right
Mass of the cart B = 1.0 kg
Velocity of Cart B = 1.4 m/s towards left
Momentum (P)= Mass × Velocity

(Negative sign means velocity of the cart is in opposite direction of that of the cart A)
Total Momentum =
Hence, the correct option is (c.).
Compared to the charge on a proton, the amount of charge on an electron is same and has the opposite sign