The student who displaced the spring by 2 cm has less potential energy than the student who displaced the spring by 4 cm, this is because potential energy (elastic) is directly proportionate to extension (displaced amount), so as the amount of displacement of the spring is higher, then the potential energy of the springs is higher and vice versa.
<h2>
Power of cheetah is 5576.85 W = 7.48 hp</h2>
Explanation:
Power is the ratio of energy to time.
Here we need to consider kinetic energy,
Mass, m = 102 kg
Initial velocity = 0 m/s
Final velocity = 16.2 m/s
Time, t = 2.4 s
Initial kinetic energy = 0.5 x Mass x Initial velocity² = 0.5 x 102 x 0² = 0 J
Final kinetic energy = 0.5 x Mass x Final velocity² = 0.5 x 102 x 16.2² = 13384.44 J
Change in energy = Final kinetic energy - Initial kinetic energy
Change in energy = 13384.44 - 0
Change in energy = 13384.44 J
Power = 13384.44 ÷ 2.4 = 5576.85 W = 7.48 hp
Power of cheetah is 5576.85 W = 7.48 hp
Answer:
v_{ average} = 5.57
Explanation:
The most probable value of a measure is
v_average =
∑ x_i
where N is the number of measurements
in tes case N = 3
v_{average} = ⅓ (5.63 +5.54 + 5.53)
V_{average} = 5,567
The number of significant figures must be equal to the number of figures that have the least in the readings.
v_{ average} = 5.57
Answer:
y = 10.2 m
Explanation:
It is given that,
Charge, 
It is placed at a distance of 9 cm at x axis
Charge, 
It is placed at a distance of 16 cm at x axis
We need to find the point on the y-axis where the electric potential zero. The net potential on y-axis is equal to 0. So,

Here,

So,

Squaring both sides,

So, at a distance of 10.2 m on the y axis the electric potential equals 0.