20 is the atomic number for Calcium.
Answer:
a = 4.9(1 - sinθ - 0.4cosθ)
Explanation:
Really not possible without a complete setup.
I will ASSUME that this an Atwood machine with two masses (m) connected by an ideal rope passing over an ideal pulley. One mass hangs freely and the other is on a slope of angle θ to the horizontal with coefficient of friction μ. Gravity is g
F = ma
mg - mgsinθ - μmgcosθ = (m + m)a
mg(1 - sinθ - μcosθ) = 2ma
½g(1 - sinθ - μcosθ) = a
maximum acceleration is about 2.94 m/s² when θ = 0
acceleration will be zero when θ is greater than about 46.4°
Answer:
A) The sum of the kinetic energy and the gravitational potential energy changes by an amount equal to the energy dissipated by friction,
Explanation:
- The kinetic energy is the energy that the object has and is defied by the work that is needed to accelerate the body.
- The gravitational potential is a mechanism by which an equal amount of energy is being transferred per unit mass that is needed for the object to move from the specific location.
- Hence when the sled moves down the hill with the force of gravity it has negligible resistance as an equal amount of energy is dissipated.
Answer:
no I don’t think there can be so my answer is No.
Okay then yes sorry that I must have gotten it wrong before.
Explanation: