Answer:
Lindsey biked 45 miles for 3 hours at 15 mph and walked 8 miles for 2 hours at 4 mph.
Explanation:
Speed = distance/time
Let the distance that Lindsey biked through be x miles and the time it took her to bike through that distance be t hours
Then, the rest of the distance that she walked is (53 - x) miles
And the time she spent walking that distance = (5 - t) hours
Her biking speed = 15 mph = 15 miles/hour
Speed = distance/time
15 = x/t
x = 15 t (eqn 1)
Her walking speed = 4 mph = 4 miles/hour
4 = (53 - x)/(5 - t)
53 - x = 4 (5 - t)
53 - x = 20 - 4t (eqn 2)
Substitute for X in (eqn 2)
53 - 15t = 20 - 4t
15t - 4t = 53 - 20
11t = 33
t = 3 hours
x = 15t = 15 × 3 = 45 miles.
(53 - x) = 53 - 45 = 8 miles
(5 - t) = 5 - 3 = 2 hours
So, it becomes evident that Lindsey biked 45 miles for 3 hours at 15 mph and walked 8 miles for 2 hours at 4 mph.
A) The kinetic energy of an object is given by:

where m is the mass of the object, and v its speed. For the lion in our problem, m=45 kg and v=14.2 m/s, so its kinetic energy is

b) the increase in gravitational potential energy of the lion is given by:

where g is the gravitational acceleration, and

is the increase in altitude of the lion. In this problem,

, so the increase in gravitational potential energy is

c) When the fox reaches the top of the tree, its gravitational potential energy is

As it jumps, its kinetic energy is

So the total mechanical energy of the fox as it jumps is
Let car A's starting position be the origin, so that its position at time <em>t</em> is
A: <em>x</em> = (40 m/s) <em>t</em>
and car B has position at time <em>t</em> of
B: <em>x</em> = 100 m - (60 m/s) <em>t</em>
<em />
They meet when their positions are equal:
(40 m/s) <em>t</em> = 100 m - (60 m/s) <em>t</em>
(100 m/s) <em>t</em> = 100 m
<em>t</em> = (100 m) / (100 m/s) = 1 s
so the cars meet 1 second after they start moving.
They are 100 m apart when the difference in their positions is equal to 100 m:
(40 m/s) <em>t</em> - (100 m - (60 m/s) <em>t</em>) = 100 m
(subtract car B's position from car A's position because we take car A's direction to be positive)
(100 m/s) <em>t</em> = 200 m
<em>t</em> = (200 m) / (100 m/s) = 2 s
so the cars are 100 m apart after 2 seconds.
Answer:
Impedance, Z = 107 ohms
Explanation:
It is given that,
Resistance, R = 100 ohms
Inductance, 
Capacitance, 
Frequency, f = 60 Hz
Voltage, V = 120 V
The impedance of the circuit is given by :
...........(1)
Where
is the capacitive reactance, 

is the inductive reactance, 

So, equation (1) becomes :

Z = 106.26 ohms
or
Z = 107 ohms
So, the impedance of the circuit is 107 ohms. Hence, this is the required solution.
Answer:
electrons exist in specified energy levels
Explanation:
In its gold-foil scattering with alpha particles, Rutherford proved that the plum-pudding model of the atom theorised by Thomson was wrong.
From his experiment, Rutherford inferred that the atom actually consists of a very small nucleus, where all the positive charge is concentrated, and the rest of the atom is basically empty, with the electrons (negatively charged) orbiting around the nucleus at very large distance.
However, Rutherford did not specify anything about the orbits of the electrons. Later, Bohr predicted that the electrons actually orbit the nucleus in specific orbits, each orbit corresponding to a specific energy level. Bohr's model found confirmation in the observation of the emission spectrum lines: when an electron in one of the higher energy level jumps down into an orbit with lower energy, the atom emits a photon which has an energy exactly equal to the difference in energy between the two orbits (and this energy of the photon corresponds to a precise wavelength).