Answer:
The pressure of the remaining gas in the tank is 6.4 atm.
Explanation:
Given that,
Temperature T = 13+273=286 K
Pressure = 10.0 atm
We need to calculate the pressure of the remaining gas
Using equation of ideal gas

For a gas

Where, P = pressure
V = volume
T = temperature
Put the value in the equation
....(I)
When the temperature of the gas is increased
Then,
....(II)
Divided equation (I) by equation (II)





Hence, The pressure of the remaining gas in the tank is 6.4 atm.
Answer:
the magnitude of the torque on the permanent magnet = 7.34×10⁻³ Nm
the potential energy (in J) of the system consisting of the permanent magnet and the magnetic field provided by the coils = -1.0485 ×10⁻² J
Explanation:
The torque is given by :

where ;
m = 0.160 A.m²
B = 0.0800 T
θ = 35°
So the magnitude of the torque N = mBsinθ
N = (0.160)(0.0800)(sin 35°)
N = 0.007341
N = 7.34×10⁻³ Nm
Hence, the magnitude of the torque on the permanent magnet = 7.34×10⁻³ Nm
b) The potential energy 
U = -mBcosθ
U = (- 0.160)(0.0800)(cos 45)
U = -0.010485
U = -1.0485 ×10⁻² J
Thus, the potential energy (in J) of the system consisting of the permanent magnet and the magnetic field provided by the coils = -1.0485 ×10⁻² J
For each pair Independent variable and the dependent variable is -
a. How much gas is left in the gas tank vs. how far the car has traveled.
- Independent variable = how far the car has traveled
- dependent variable = How much gas is left in the gas tank
b. How much money you've spent vs. how much money is in your wallet.
- Independent variable = How much money you've spent
- dependent variable = how much money is in your wallet.
c. How far a toy car traveled vs. how much time went by
- Independent variable = how much time went by
- dependent variable = How far a toy car traveled
An independent variable in any experiment or research is a variable that is manipulated or changed in the experiment, this change leads to a direct effect on the dependent variable.
A dependent variable is a variable that is directly affected by the independent variable and it is the variable that is measured or tested in an experiment.
Thus,
a. How much gas is left in the gas tank vs. how far the car has traveled.
- Independent variable = how far the car has traveled
- dependent variable = How much gas is left in the gas tank
b. How much money you've spent vs. how much money is in your wallet.
- Independent variable = How much money you've spent
- dependent variable = how much money is in your wallet.
c. How far a toy car traveled vs. how much time went by
- Independent variable = how much time went by
- dependent variable = How far a toy car traveled
Learn more about dependent variables:
brainly.com/question/1670595:
There's nothing mysterious about it at all. "Frequency" simply means
"often-ness" ... how often or how frequently something happens.
-- The frequency of traditional meals is 3 per day.
-- The frequency of an equinox is 2 per year.
-- The frequency of my sleeping really late is 1 per week.
-- The frequency of my intense desire to sleep late is 30 per month.
etc.
-- The standard unit of frequency in the SI system is "per second".
The special name for that unit is "Hertz". (Hz)
Answer:
The correct answers are
(a) It decreases to 1/3 L
(ii) is (c) It is constant
Explanation:
to solve this, we list out the number of knowns and unknowns so as to determine the correct equation to solve the problem
The given variables are as follows
Initial volume V1 = 1L
V2 = Unknown
Initial Temperature T1 = 300K
let us assume that the balloon is perfectly elastic
At 300K the balloon is filled and it stretches to maintain 1 atmosphere
at 100K the content of the balloon cools reducing the excitement of the gas content which also reduces the pressure, however, the balloon being perfectly elastic, contracts to maintain the 1 atmospheric pressure, hence the answer to (ii) is (c) It is constant,
For (i) since we know that the pressure of the balloon is constant
by Charles Law V1/T1 =V2/T2
or V2 = (V1/T1)×T2 =
×
=
× L = L/3 hence the correct answer to (i) is 1/3L