I think it is because the electrons repel each other
I'm guessing that you mean like this:
-- The ruler is held with zero at the bottom, and the centimeter markings
increase as you go up the ruler.
-- You place your fingers with the ruler and the zero mark between them.
-- The number where you catch the ruler is the distance it has fallen.
Then, all we have to find is the time it takes for the ruler to fall 11.3 cm .
Here's the formula for the distance an object falls from rest
in a certain time:
Distance = (1/2) (gravity) (time)²
On Earth, the acceleration of gravity is 9.8 m/s².
So we can write ...
11.2 cm = (1/2) (9.8 m/s²) (time)²
or
0.112 meter = (4.9 m/s²) (time)²
Divide each side
by 4.9 m/s² : (0.112 m) / (4.9 m/s²) = time²
(0.112 / 4.9) sec² = time²
Square root
each side: time = √(0.112/4.9 sec²)
= √ 0.5488 sec²
= 0.74 second (rounded)
The velocity of the second glider after the collision is 4.33 m/s rightward.
<h3>
Velocity of the second glider after the collision</h3>
Apply the principle of conservation of linear momentum;
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
where;
- m₁ is mass of first glider
- m₂ is mass of second glider
- u₁ is initial velocity of first glider
- u₂ is initial velocity of second glider
- v is the final velocity of the gliders
(2)(1) + (3)(5) = (2)(2) + 3v₂
17 = 4 + 3v₂
3v₂ = 17 - 4
3v₂ = 13
v₂ = 13/3
v₂ = 4.33 m/s
Thus, the velocity of the second glider after the collision is 4.33 m/s rightward.
Learn more about linear momentum here: brainly.com/question/7538238
#SPJ1