Answer:
127.3° C, (This is not a choice)
Explanation:
This is about the colligative property of boiling point.
ΔT = Kb . m . i
Where:
ΔT = T° boling of solution - T° boiling of pure solvent
Kb = Boiling constant
m = molal (mol/kg)
i = Van't Hoff factor (number of particles dissolved in solution)
Water is not a ionic compound, but we assume that i = 2
H₂O → H⁺ + OH⁻
T° boling of solution - 118.1°C = 0.52°C . m . 2
Mass of solvent = Solvent volume / Solvent density
Mass of solvent = 500 mL / 1.049g/mL → 476.6 g
Mol of water are mass / molar mass
76 g / 18g/m = 4.22 moles
These moles are in 476.6 g
Mol / kg = molal → 4.22 m / 0.4766 kg = 8.85 m
T° boling of solution = 0.52°C . 8.85 m . 2 + 118.1°C = 127.3°C
First we have to find Ka1 and Ka2
pKa1 = - log Ka1 so Ka1 = 0.059
pKa2 = - log Ka2 so Ka2 = 6.46 x 10⁻⁵
Looking at the values of equilibrium constants we can see that the first one is really big compared to second one. so, the pH will be affected mainly by the first ionization of the acid.
Oxalic acid is H₂C₂O₄
H₂C₂O₄ ⇄ H⁺ + HC₂O₄⁻
0.0356 M 0 0
0.0356 - x x x
Ka1 =
![\frac{[H^+][HC2O4^-]}{[H2C2O4]}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BH%5E%2B%5D%5BHC2O4%5E-%5D%7D%7B%5BH2C2O4%5D%7D%20)
= x² / 0.0356 - x
x = 0.025 M
pH = - log [H⁺] = - log (0.025) = 1.6
Answer:
The mass was there all along, it was just in the air. The weight of the oxygen from the air is not weighed in the beginning, only at the end as part of the product, making it seem like there is a total mass change.
Answer:
The hottest thing on earth is the man-made quark-gluon plasma that is generated at the LHC at CERN by colliding two lead nuclei together at 7 GeV /c2.
Explanation:
Answer: 2 (2 neutrons are produced).
Explanation:
1) In the left side of the transmutation equationa appears:
²³⁵U + ¹n →
I am omitting the atomic number (subscript to the leff) because the question does not show them as it is focused on number of neutrons.
2) The right side of the transmutation equation has:
→ ¹⁴⁴Ce + ⁹⁰Sr + ?
3) The total mass number of the left side is 235 + 1 = 236
4) The total mass number of Ce and Sr on the right side is 144 + 90 = 234
5) Then, you are lacking 236 - 234 = 2 unit masses on the right side which are the 2 neutrons that are produced along with the Ce and Sr.
The complete final equation is:
²³⁵U + ¹n → ¹⁴⁴Ce + ⁹⁰Sr + 2 ¹n
Where you have the two neutrons produced.