Answer:
So coefficient of kinetic friction will be equal to 0.4081
Explanation:
We have given mass of the block m = 0.5 kg
The spring is compressed by length x = 0.2 m
Spring constant of the sprig k = 100 N/m
Blocks moves a horizontal distance of s = 1 m
Work done in stretching the spring is equal to 
This energy will be equal to kinetic energy of the block
And this kinetic energy must be equal to work done by the frictional force
So 


So coefficient of kinetic friction will be equal to 0.4081
Explanation:
F = ma, and a = Δv / Δt.
F = m Δv / Δt
Given: m = 60 kg and Δv = -30 m/s.
a) Δt = 5.0 s
F = (60 kg) (-30 m/s) / (5.0 s)
F = -360 N
b) Δt = 0.50 s
F = (60 kg) (-30 m/s) / (0.50 s)
F = -3600 N
c) Δt = 0.05 s
F = (60 kg) (-30 m/s) / (0.05 s)
F = -36000 N
Answer:
1. Recollapsing universe
2. Critical universe
3. Coasting universe
Explanation:
Recollapsing universe has dark matter density greater than critical density. While critical universe has its matter density equal to the critical sensity. Coasting universe on the other hand has much smaller matter density compared to critical density.
Note that the critical density is approximately 10^-20 grams/cm3
Answer:
875 N
Explanation:
From this question, you didn't state the time taken for the bumper car to move or to hit the other bumper car. In calculations of force, time is often needed, because
Force = mass * acceleration, while
Acceleration = velocity / time, basically
Force = mass * velocity / time.
We have our mass, we have our velocity, but we haven't time. So, for this calculation, I'd assume our time to be 1s.
Going by the formula I stated, we can then say that
Force = 250 * 3.5 / 1
Force = 875 N
This means the force my bumper car have while moving at 3.5 m/s for an estimated time of 1s is 875 N
Answer:
a) a = 3.09 m/s²
b) aₓ = 2.60 m/s²
Explanation:
a) The magnitude of her acceleration can be calculated using the following equation:

<u>Where</u>:
: is the final speed = 8.89 m/s
: is the initial speed = 0 (since she starts from rest)
a: is the acceleration
d: is the distance = 12.8 m

Therefore, the magnitude of her acceleration is 3.09 m/s².
b) The component of her acceleration that is parallel to the ground is given by:

<u>Where</u>:
θ: is the angle respect to the ground = 32.6 °

Hence, the component of her acceleration that is parallel to the ground is 2.60 m/s².
I hope it helps you!