Answer:
a) i = -9.63 cm
, h ’= .0.24075 cm erect
b) i = 259.74 cm
,
Explanation:
For this exercise let's start by finding the focal length of the lens
1 / f = (n-1) (1 / R₁ - 1 / R₂)
1 / f = (1.70 -1)) 1 / ∞ - 1/13)
1 / f = 0.0538
f = - 18.57 cm
Now we can use the constructor equation
1 / f = 1 / o + 1 / i
1 / i = 1 / f - 1 / o
1 / i = -1 / 18.57 -1/20
1 / i = -0.1038 cm
I = -9.63 cm
For the height of the
image let's use magnification
m = h '/ h = - i / o
h ’= -h i / o
h ’= - 0.5 (-9.63) / 20
h ’= .0.24075 cm
b) we invert the lens
The focal length is
1 / f = (1.70 -1) (1/13 - 1 / int)
1 / f = 0.0538
f = 18.57 cm
1 / i = 1 / f -1 / o
1 / I = 1 / 18.57 - 1/20
1 / I = 3.85 10-3
i = 259.74 cm
h ’= - 0.5 259.74 / 20
h ’= 6.4935 cm
Answer:
Explanation:
The magnetic field due to straight wire is into the square coil.
As the current in straight wire decreases the magnetic flux in the coil decreases
. The induced magnetic field is into the coil.The induced current is along +y direction
Answer:
its the sound that a heart produces when beating, this can help doctors detect abnormalities
Answer:
4.75 m/s
Explanation:
The computation of the velocity of the existing water is shown below:
Data provided in the question
Tall = 2 m
Inside diameter tank = 2m
Hole opened = 10 cm
Bottom of the tank = 0.75 m
Based on the above information, first we have to determine the height which is
= 2 - 0.75 - 0.10
= 2 - 0.85
= 1.15 m
We assume the following things
1. Compressible flow
2. Stream line followed
Now applied the Bernoulli equation to section 1 and 2
So we get

where,
P_1 = P_2 = hydrostatic
z_1 = 0
z_2 = h
Now

= 4.7476 m/sec
= 4.75 m/s