Answer: An object's motion can be changed by unbalanced forces. Balanced forces do not change the motion of an object.
The motion of an object acted on by a force depends partly on the strength of the push or pull. The stronger the push or pull, the faster the object will move. For example, the father in the picture below is pushing his daughter in a swing. When he uses more force to push, the swing moves higher.
Explanation:
Answer:
1.5 unit of product per min
Explanation:
30 units of product was moved in 30 minutes.
Number of units left = Total number of units-number of units moved
=75-30 =45 units
45 units is available to be moved for the rest 30 min. To be able to achieve this goal of 75 units of product per hour.
45/30 amount of units must be moved in 1 min
=1.5 unit per min
1. They both are same in the process, I mean they both are types of cell division they both form and give rise to new cells from the existing ones
difference would be in their division a mitotic cell gives rise to 2 cells where as a meiotic cell gives rise to 4.
2. the advantage of sexual reproduction is that , it produces genetic variation, disadvantage is it's a very slow process and takes lot of time
3. the advantage is that ,it's a very rapid process as it doesn't involve complex interactions. of genes and chromosomal recombination, the disadvantage would be is that they don't produce variation which can have adverse affect on their survival, even due to slightest change in the environment
4. Undergoing both the type of cell division is good as in human mitotic division is meant for growth and development whereas meiotic divisions are necessary and important for gametes formation and for raising new generation
Answer:
55.66 m
Explanation:
While falling by 50 m , initial velocity u = 0
final velocity = v , height h = 50 , acceleration g = 9.8
v² = u² + 2gh
= 0 + 2 x 9.8 x 50
v = 31.3 m /s
After that deceleration comes into effect
In this case final velocity v = 17 m/s
initial velocity u = 31.3 m/s
acceleration a = - 61 m/s²
distance traveled h = ?
v² = u² + 2gh
(17)² = (31.3)² - 2x 61xh
h = 690.69 / 2 x 61
= 5.66 m
Total height during which he was in air
= 50 + 5.66
= 55.66 m
Answer:
24) W = 75 [J]; 25) W = 1794[J]; 26) n = 8.8 (times) or 9 (times)
Explanation:
24) This problem can be solved by means of the following equation.

where:
DU = internal energy difference [J]
Q = Heat transfer [J]
W = work [J]
Since there are no temperature changes the internal energy change is equal to zero
DU = 0
therefore:

The work is equal to the heat transfered, W = 75 [J].
25) The heat transfer can be calculated by means of the following equation.
![Q = m*c_{p}*DT\\where:\\m = mass = 0.4[kg]\\c_{p} = specific heat = 897[J/kg*K]\\DT= 5 [C]](https://tex.z-dn.net/?f=Q%20%3D%20m%2Ac_%7Bp%7D%2ADT%5C%5Cwhere%3A%5C%5Cm%20%3D%20mass%20%3D%200.4%5Bkg%5D%5C%5Cc_%7Bp%7D%20%3D%20specific%20heat%20%3D%20897%5BJ%2Fkg%2AK%5D%5C%5CDT%3D%205%20%5BC%5D)
Q = 0.4*897*5 = 1794[J]
Work is equal to heat transfer, W = 1794[J]
26) Each time the bag falls the potential energy is transformed into heat energy, which is released into the environment. In this way the potential energy is equal to the developed heat.

where:
m = mass = 0.5[kg]
g = gravity = 9.81[m/s^2]
h = 1.5 [m]
![E_{p}=0.5*9.81*1.5\\E_{p}=7.36[J]](https://tex.z-dn.net/?f=E_%7Bp%7D%3D0.5%2A9.81%2A1.5%5C%5CE_%7Bp%7D%3D7.36%5BJ%5D)
The heat developed can be calculated by means of the following equation.
![Q=m*c_{p}*DT\\Q=0.5*130*1\\Q=65[J]](https://tex.z-dn.net/?f=Q%3Dm%2Ac_%7Bp%7D%2ADT%5C%5CQ%3D0.5%2A130%2A1%5C%5CQ%3D65%5BJ%5D)
The number of times will be calculated as follows
n = 65/7.36
n = 8.8 (times) or 9 (times)