Answer:
The coefficient of static friction is 0.29
Explanation:
Given that,
Radius of the merry-go-round, r = 4.4 m
The operator turns on the ride and brings it up to its proper turning rate of one complete rotation every 7.7 s.
We need to find the least coefficient of static friction between the cat and the merry-go-round that will allow the cat to stay in place, without sliding. For this the centripetal force is balanced by the frictional force.

v is the speed of cat, 

So, the least coefficient of static friction between the cat and the merry-go-round is 0.29.
Kinetic energy.
Kinetic energy is the type of energy observed in moving objects. In this case the football player is running, ie moving, so he/she must have kinetic energy.
Answer:
It is calculated by dividing Resistance, R, by Inductive reactance, XL.
Explanation:
Q is called the Q factor of a resonance circuit. In a parallel resonance circuit, it is calculated by finding the ratio of the power stored in the circuit to the power distributed in the circuit. It is a way of measuring the quality of a circuit or how effective the circuit is.
Q factor is the inverse in the resonance series circuit.
Q factor of a resonance parallel circuit,
<h3>
Q = R/XL</h3>
R = Resistance
XL = Inductive reactance