1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sphinxa [80]
3 years ago
8

What is the magnitude of the magnetic field at a point midway between them if the top one carries a current of 19.5 A and the bo

ttom one carries 12.5 A ? Express your answer using three significant figures.

Physics
1 answer:
Phantasy [73]3 years ago
5 0

Answer:

The magnetic field will be \large{\dfrac{1.4 \times 10^{-4}}{d}} T, '2d' being the distance the wires.

Explanation:

From Biot-Savart's law, the magnetic field (\large{\overrightarrow{B}}) at a distance 'r' due to a current carrying conductor carrying current 'I' is given by

\large{\overrightarrow{B} = \dfrac{\mu_{0}I}{4 \pi}} \int \dfrac{\overrightarrow{dl} \times \hat{r}}{r^{2}}}

where '\overrightarrow{dl}' is an elemental length along the direction of the current flow through the conductor.

Using this law, the magnetic field due to straight current carrying conductor having current 'I', at a distance 'd' is given by

\large{\overrightarrow{B}} = \dfrac{\mu_{0}I}{2 \pi d}

According to the figure if 'I_{t}' be the current carried by the top wire, 'I_{b}' be the current carried by the bottom wire and '2d' be the distance between them, then the direction of the magnetic field at 'P', which is midway between them, will be perpendicular towards the plane of the screen, shown by the \bigotimes symbol and that due to the bottom wire at 'P' will be perpendicular away from the plane of the screen, shown by \bigodot symbol.

Given \large{I_{t} = 19.5 A} and \large{I_{B} = 12.5 A}

Therefore, the magnetic field (\large{B_{t}}) at 'P' due to the top wire

B_{t} = \dfrac{\mu_{0}I_{t}}{2 \pi d}

and the magnetic field (\large{B_{b}}) at 'P' due to the bottom wire

B_{b} = \dfrac{\mu_{0}I_{b}}{2 \pi d}

Therefore taking the value of \mu_{0} = 4\pi \times 10^{-7} the net magnetic field (\large{B_{M}}) at the midway between the wires will be

\large{B_{M} = \dfrac{4 \pi \times 10^{-7}}{2 \pi d} (I_{t} - I_{b}) = \dfrac{2 \times 10^{-7}}{d} = \dfrac{41.4 \times 10 ^{-4}}{d}} T

You might be interested in
A particle of mass m moves under an attractive central force F(r) = -Kr4 with angular momentum L. For what energy will the motio
docker41 [41]

Answer:

Angular velocity is same as frequency of oscillation in this case.

ω = \sqrt{\frac{7K}{m} } x [\frac{L^{2}}{mK}]^{3/14}

Explanation:

- write the equation F(r) = -Kr^{4} with angular momentum <em>L</em>

- Get the necessary centripetal acceleration with radius r₀ and make r₀ the subject.

- Write the energy of the orbit in relative to r = 0, and solve for "E".

- Find the second derivative of effective potential to calculate the frequency of small radial oscillations. This is the effective spring constant.

- Solve for effective potential

- ω = \sqrt{\frac{7K}{m} } x [\frac{L^{2}}{mK}]^{3/14}

3 0
3 years ago
A freshly prepared sample of radioactive isotope has an activity of 10 mCi. After 4 hours, its activity is 8 mCi. Find: (a) the
Maurinko [17]

Answer:

(a). The decay constant is 1.55\times10^{-5}\ s^{-1}

The half life is 11.3 hr.

(b). The value of N₀ is 2.38\times10^{11}\ nuclei

(c). The sample's activity is 1.87 mCi.

Explanation:

Given that,

Activity R_{0}=10\ mCi

Time t_{1}=4\ hours

Activity R= 8 mCi

(a). We need to calculate the decay constant

Using formula of activity

R=R_{0}e^{-\lambda t}

\lambda=\dfrac{1}{t}ln(\dfrac{R_{0}}{R})

Put the value into the formula

\lambda=\dfrac{1}{4\times3600}ln(\dfrac{10}{8})

\lambda=0.0000154\ s^{-1}

\lambda=1.55\times10^{-5}\ s^{-1}

We need to calculate the half life

Using formula of half life

T_{\dfrac{1}{2}}=\dfrac{ln(2)}{\lambda}

Put the value into the formula

T_{\dfrac{1}{2}}=\dfrac{ln(2)}{1.55\times10^{-5}}

T_{\dfrac{1}{2}}=44.719\times10^{3}\ s

T_{\dfrac{1}{2}}=11.3\ hr

(b). We need to calculate the value of N₀

Using formula of N_{0}

N_{0}=\dfrac{3.70\times10^{6}}{\lambda}

Put the value into the formula

N_{0}=\dfrac{3.70\times10^{6}}{1.55\times10^{-5}}

N_{0}=2.38\times10^{11}\ nuclei

(c). We need to calculate the sample's activity

Using formula of activity

R=R_{0}e^{-\lambda\times t}

Put the value intyo the formula

R=10e^{-(1.55\times10^{-5}\times30\times3600)}

R=1.87\ mCi

Hence, (a). The decay constant is 1.55\times10^{-5}\ s^{-1}

The half life is 11.3 hr.

(b). The value of N₀ is 2.38\times10^{11}\ nuclei

(c). The sample's activity is 1.87 mCi.

4 0
3 years ago
Imagine two fixed charges on the x axis. Charge one is +q and is located to the left of charge two which is equal to -4q. Where
givi [52]

Answer: B)To the left of the charges.

Explanation: between the charges the electric field will not cancel but will be added since electric field lines from both charges point in the same direction. To the right of the charge the -4q will take over as it’s strength overcomes the strength of the +q charge. At this point the magnitude of +q will never reach a magnitude strong enough to cancel the -4q. To the left, it is further away from -4q and is closer to +q and electric field lines point in different direction

7 0
3 years ago
If the resultant force acting on a 2.0 kg object is equal to (3.0î + 4.0ĵ) N, what is the change in kinetic energy as the object
12345 [234]

Answer:

ΔK = 24 joules.

Explanation:

ΔK = Work done on the object

Work is equal to the dot product of force supplied and the displacement of the object.

W = F * Δs

Δs can be found by subtracting the vectors (7.0, -8.0) and (11.0, -5.0), which is written as Δs = (11.0 - 7.0, -5.0 - -8.0) which equals (4.0, 3.0).

This gives us

W = < 3, 4 > * < 4, 3 > = (3*4)+(4*3) = 24 J

3 0
1 year ago
Can you classify matter based on chemical properties
VARVARA [1.3K]

Answer:

Explanation:

Matter can be broken down into two categories: pure substances and mixtures. Pure substances are further broken down into elements and compounds. Mixtures are physically combined structures that can be separated into their original components. A chemical substance is composed of one type of atom or molecule.

6 0
3 years ago
Other questions:
  • This is what occurs when matter transitions between solid, liquid and gas.
    9·2 answers
  • What are three common forms of work in science
    6·2 answers
  • How long will it take to travel 200,000 m traveling 100 m/s?
    7·1 answer
  • A mass of 100 g stretches a spring 5 cm. If the mass is set in motion from its equilibrium position with a downward velocity of
    11·1 answer
  • A bus starting from rest moves with a uniform acceleration of 0.1 m s -2 for 2 minutes. Find (a) the speed acquired, (b) the dis
    12·1 answer
  • Nuclear reactors use fuel rods to heat water and generate steam. Is this process endothermic or exothermic?
    7·2 answers
  • What is not an example of a mineral?a.gold b.mica c.steel d.quartz
    15·2 answers
  • The force experienced by an electron in a field between parallel plates is proportional to which of the following? Select all th
    11·1 answer
  • Match each term to its definition.
    7·2 answers
  • Maya made this picture to represent a chemical reaction:
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!