Answer:
it's A endothermic its when two objects rub each other to form heat this is also known as friction force
Answer:
λ = 2.38 × 10^(-7) m
Explanation:
We are given the work function for palladium as 503.7 kJ/mol.
Now let's convert this to KJ/electron.
We know from avogadro's number that;
1 mole of electron = 6.022 × 10^(23) electrons
Thus,
503.7 kJ/mol = 503.7 × 1/(6.022 × 10^(23)) = 8.364 × 10^(-22) KJ/electron = 8.364 × 10^(-19) J/electron
Formula for energy of a photon is;
E = hv
Where;
h is Planck's constant = 6.626 × 10^(-34) J.s
v is velocity
Now, v = c/λ
Where;
c is speed of light = 3 × 10^(8) m/s
λ is wavelength of light.
Thus;
E = hc/λ
Making λ the subject, we have;
λ = hc/E
λ = (6.626 × 10^(-34) × 3 × 10^(8))/(8.364 × 10^(-19))
λ = 2.38 × 10^(-7) m
Answer:
The correct option is: (D) would function as both an acid and a base
Explanation:
A carbon skeleton bonded to a amino group as well as a carboxyl group, will behave as an acid in basic medium and base in acidic medium. This is because the carboxyl group present in the compound will release a proton in basic medium and the amino group will accept a proton in the acidic medium.
<u>Therefore, a carbon skeleton which is covalently bonded to a carboxyl and amino group will behave as both acid and base.</u>
Answer:
0.693 (you can round it up if you want to)
Explanation:
Density= mass ÷ volume
54.2 ÷ 78.1 = 0.693
I hope this helped☺
The atomic radius decreases across a period from left to right and increases down a given group. The atoms with the largest atomic radii are located in group l and at the bottom of groups. Moving from left to right across a period, electrons are added one at a time to the outer energy shell. Hope this helps!