Answer:
3rd option. 1–butanamine
Explanation:
To name the compound above, the following must be observed:
1. Locate the functional group in the chain. In this case the functional group is amine.
2. Locate the longest continuous carbon chain. This gives the parent name of the compound. In this case, the longest chain has 4 carbon i.e butane.
3. Since the functional group is amine, the parent name becomes butanamine i.e replacing the –e at the end in butane with –amine
4. Indicate the position of the functional group in the chain. In this case the functional group is at carbon 1
5. Name the compound by putting the above together.
The name of the compound is:
1–butanamine or butan–1–amine
Use the coefficients as a ratio. 1:6 = x:24. You can write these as fractions and cross multiply, 6x=24. Solve and x=4, so four molecules would be needed
Answer:
Explanation: When solutions of potassium iodide and lead nitrate are combined?
The lead nitrate solution contains particles (ions) of lead, and the potassium iodide solution contains particles of iodide. When the solutions mix, the lead particles and iodide particles combine and create two new compounds, a yellow solid called lead iodide and a white solid called potassium nitrate. Chemical Equation Balancer Pb(NO3)2 + KI = KNO3 + PbI2. Potassium iodide and lead(II) nitrate are combined and undergo a double replacement reaction. Potassium iodide reacts with lead(II) nitrate and produces lead(II) iodide and potassium nitrate. Potassium nitrate is water soluble. The reaction is an example of a metathesis reaction, which involves the exchange of ions between the Pb(NO3)2 and KI. The Pb+2 ends up going after the I- resulting in the formation of PbI2, and the K+ ends up combining with the NO3- forming KNO3. NO3- All nitrates are soluble. ... (Many acid phosphates are soluble.)
I think this one is the organelles.
Answer:
1,063 grams H₃PO₄
Explanation:
To find the mass of phosphoric acid (H₃PO₄), you should (1) convert molecules to moles (via Avogadro's number) and then (2) convert moles to grams (via molar mass from periodic table).
Molar Mass (H₃PO₄): 3(1.008 g/mol) + 30.974 g/mol + 4(15.998 g/mol)
Molar Mas (H₃PO₄): 97.99 g/mol
6.534 x 10²⁴ molecules H₃PO₄ 1 mole 97.99 g
--------------------------------------------- x ------------------------------------- x --------------
6.022 x 10²³ molecules 1 mole
= 1,063 grams H₃PO₄