1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
julsineya [31]
2 years ago
9

9. a) What is the Doppler effect? b) How does it work? c) If 12 points

Physics
1 answer:
mart [117]2 years ago
8 0

a) Doppler effect is an apparent change in the frequency of a wave due to the relative motion between the source and the observer

b) It is given by the equation f'=\frac{v\pm v_o}{v\pm v_s}f

c) The star is moving towards us

Explanation:

a)

The Doppler effect is a phenomenon that occurs whenever there is a source of a wave in relative motion to an observer. When such situation occurs, the apparent frequency of the sound as perceived by the observe is different from the proper frequency of the wave emitted by the source.

A typical example of this situation is when an ambulance is approaching you. The sound of the siren is perceived as having a higher pitch (higher frequency) as the ambulance moves towards you, and then is perceived as having a lower pitch (lower frequency) when the ambulance moves away from you.

The same phenomenon occurs not only with sound waves, but also with light waves and other types of waves.

b)

Mathematically, the Doppler effect can be summarized by the following equation:

f'=\frac{v\pm v_o}{v\pm v_s}f

where:

f is the proper frequency of the wave emitted by the source

f' is the apparent frequency, as perceived by the observer

v is the speed of the wave

v_o is the velocity of the observer, which is positive if the observer is moving towards the source and negative if the observer is moving away from the source

v_s is the velocity of the source, which is positive if the source is moving away from the observer and negative if the source is moving towards the observer

Applied to the example of the ambulance, we have that:

v_o = 0, assuming that the observer is at rest

- when the ambulance is moving towards the observer, v_s is negative, and therefore the fraction is larger than 1, therefore f'>f and the apparent frequency is higher than the real frequency

- when the ambulance is moving away from the observer, v_s is positive, and therefore the fraction is  smaller than 1, therefore f' and the apparent frequency is lower than the real frequency

c)

As we mentioned earlier, the Doppler effect also occurs with light waves. This is particularly relevant for stars or galaxies moving towards or away from us, since the light coming from these objects will have a frequency (and also a wavelength) "shifted" due to the Doppler effect.

In particular, we have two possible  cases:

- For a star moving away from us, the frequency of the light emitted by the star will appear lower than the real frequency --> this means that its wavelength will appear longer than the real wavelength (because wavelength is inversely proportional to the frequency), and this means that the light will appear shifted towards longer wavelengths (so, towards the red end of the visible spectrum)

- For a star moving away towards us, the frequency of the light emitted by the star will appear higher than the real frequency --> this means that its wavelength will appear shorter than the real wavelength, and this means that the light will appear shifted towards shorter wavelengths (so, towards the blue end of the visible spectrum)

Therefore, if a star looks bluer to us than it should, the star is moving towards us.

Learn more about waves:

brainly.com/question/5354733

brainly.com/question/9077368

#LearnwithBrainly

You might be interested in
What is it called when velocity changes over time
natka813 [3]
Well,

When an object's velocity changes, we call it acceleration.

Acceleration: The time rate of change in an object's velocity
3 0
3 years ago
Read 2 more answers
Your answer should be precise to 0.1 m/s. Use a gravitational acceleration of 10 m/s/s. At it lowest point, a pendulum is moving
saw5 [17]

Explanation:

It is given that,

Speed, v₁ = 7.7 m/s

We need to find the velocity after it has risen 1 meter above the lowest point. Let it is given by v₂. Using the conservation of energy as :

\dfrac{1}{2}mv_1^2=\dfrac{1}{2}mv_2^2+mgh

v_2^2=v_1^2-2gh

v_2^2=(7.7)^2-2\times 10\times 1

v_2=6.26\ m/s

So, the velocity after it has risen 1 meter above the lowest point is 6.26 m/s. Hence, this is the required solution.

4 0
3 years ago
Read 2 more answers
If a cart is accelerating downhill under a net force of 25 N, what additional force would cause the cart to have a constant velo
Vladimir [108]
No additional force is required because it's already going downhill
7 0
2 years ago
How do you change the currents in a circuit
mel-nik [20]
-
Eddy Current Testing

Introduction
Basic Principles
History of ET
Present State of ET

The Physics
Properties of Electricity
Current Flow & Ohm's Law
Induction & Inductance
Self Inductance
Mutual Inductance
Circuits & Phase
Impedance
Depth & Current Density
Phase Lag

Instrumentation
Eddy Current Instruments
Resonant Circuits
Bridges
Impedance Plane
Display - Analog Meter

Probes (Coils)
Probes - Mode of Operation
Probes - Configuration
Probes - Shielding
Coil Design
Impedance Matching

Procedures Issues 
Reference Standards
Signal Filtering

Applications
Surface Breaking Cracks
SBC using Sliding Probes
Tube Inspection 
Conductivity 
Heat Treat Verification
Thickness of Thin Mat'ls
Thickness of Coatings

Advanced Techniques
Scanning
Multi-Frequency Tech.
Swept Frequency Tech.
Pulsed ET Tech.
Background Pulsed ET
Remote Field Tech.

Quizzes

Formulae& Tables
EC Standards & Methods
EC Material Properties
-






Current Flow and Ohm's Law

Ohm's law is the most important, basic law of electricity. It defines the relationship between the three fundamental electrical quantities: current, voltage, and resistance. When a voltage is applied to a circuit containing only resistive elements (i.e. no coils), current flows according to Ohm's Law, which is shown below.

I = V / R 

Where: 

I =

Electrical Current (Amperes)

V =

Voltage (Voltage)

R =

Resistance (Ohms)

    

Ohm's law states that the electrical current (I) flowing in an circuit is proportional to the voltage (V) and inversely proportional to the resistance (R). Therefore, if the voltage is increased, the current will increase provided the resistance of the circuit does not change. Similarly, increasing the resistance of the circuit will lower the current flow if the voltage is not changed. The formula can be reorganized so that the relationship can easily be seen for all of the three variables.

The Java applet below allows the user to vary each of these three parameters in Ohm's Law and see the effect on the other two parameters. Values may be input into the dialog boxes, or the resistance and voltage may also be varied by moving the arrows in the applet. Current and voltage are shown as they would be displayed on an oscilloscope with the X-axis being time and the Y-axis being the amplitude of the current or voltage. Ohm's Law is valid for both direct current (DC) and alternating current (AC). Note that in AC circuits consisting of purely resistive elements, the current and voltage are always in phase with each other.

Exercise: Use the interactive applet below to investigate the relationship of the variables in Ohm's law. Vary the voltage in the circuit by clicking and dragging the head of the arrow, which is marked with the V. The resistance in the circuit can be increased by dragging the arrow head under the variable resister, which is marked R. Please note that the vertical scale of the oscilloscope screen automatically adjusts to reflect the value of the current.

See what happens to the voltage and current as the resistance in the circuit is increased. What happens if there is not enough resistance in a circuit? If the resistance is increased, what must happen in order to maintain the same level of current flow?


4 0
3 years ago
What is the relationship between the applied force of a hanging mass on a spring and the spring force of the spring?
zaharov [31]

Answer:

elastic force and weight are related to the acceleration of the System.

Explanation:

The relationship between these two forces can be found with Newton's second law.

        F_{e} - W = m a

        K x - m g = m a

We see that elastic force and weight are related to the acceleration of the System.

If a harmonic movement is desired, an extra force that increases the elastic force is applied, but to begin the movement this force is eliminated, in general , if the relationship between this external and elastic force is desired, the only requirement is that it be small for harmonic movement to occur

7 0
3 years ago
Other questions:
  • Eq-45 what type of boat requires navigation lights?
    11·1 answer
  • Waves move fastest in
    9·2 answers
  • What happens to ocean water as it moves from Antarctica to the equator
    6·1 answer
  • Which activity is an example of a chemical change?
    11·2 answers
  • A 0.20 kg stone is dropped (from rest) from a height of 40.0 m above the ground. How far above the ground is the stone when it's
    15·1 answer
  • When an electric current is passed through water during the process of electrolysis, two gases are formed. One gas has a boiling
    9·1 answer
  • Relate temperature to the average kinetic<br> energy in a material.
    15·1 answer
  • FIRST ANSWER GETS BRAINLIST:
    8·2 answers
  • The resistance of a wire depends on
    5·1 answer
  • Why is the same side of the Moon always visible from Earth?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!