1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
eimsori [14]
3 years ago
12

What is the motion of the object?

Physics
1 answer:
aleksley [76]3 years ago
4 0

Answer:

<em>Thus, the object is accelerating to the left</em>

Explanation:

<u>The Net Force</u>

The net force is the result of adding all the forces as vectors acting on a body.

\vec F=\vec F_1+\vec F_2+...+\vec F_n

Each vector can be expressed in its rectangular components Fx and Fy, and the sum is the sum of the rectangular components separately.

Second Newton's law gives the relation between the net force and the acceleration of the body:

\vec F = m.\vec a

We can see the acceleration is a vector with the same direction as the net force.

The diagram shows two vertical forces and two horizontal forces.

The vertical forces are acting in opposite directions and with the same magnitude, thus they cancel out, leaving zero net force in the y-axis.

The horizontal forces are opposite and with different magnitudes. Since the force acting to the left (F3) has a greater magnitude than the force acting to the right (F4), there is a net force directed to the left with a magnitude of 60 N - 20 N = 40 N

Thus, the object is accelerating to the left

You might be interested in
A 15 m uniform ladder weighing 500 N rests against a frictionless wall. The ladder makes a 60° angle with horizontal. (a) Find t
scoray [572]

Answer:

a)    F₁ = 267.3 N,   N₁ = 1300 N,  b)    μ = 0.324

Explanation:

For this exercise we use the rotational equilibrium condition, we have a reference system is the floor and the anticlockwise rotations as positive, in the adjoint we can see a diagram of the forces

           

let's use subscript 1 for the ladder and 2 for the firefighter

            ∑ τ = 0

          -W₁ x₁ - W₂ x₂ + N₁ y = 0

           N₁ = \frac{W_1 x_1 + W_2 x_2}{y}          (1)

the center of mass of the ladder is at its geometric center,

d = L / 2 = 15/2 = 7.5 m

         cos 60 = x₁ / d₁

         x₁ = d₁ cos 60

         x₁ = 7.5 cos 60

         x₁ = 3.75 m

for the firefighter d₂ = 4 m

         cos 60 = x₂ / d₂

         x₂ = d₂ cos 60

          x₂ = 4 cos 60 = 2 m

for the fulcrum d₃ = 15 m

         sin 60 = y / d₃

         y = d₃ sin 60

         y = 15 sin 60

         y = 13 m

we look for the Normal by substituting in equation 1

         N₂ = \frac{500 \ 3.75 \ + 800 \ 2}{13}

         N₂ = 267.3 N

now let's use the translational equilibrium relations

 X axis

           F₁ - N₂ = 0

           F₁ = N₂

           F₁ = 267.3 N

Axis y

          N₁ - W₁ -W₂ = 0

          N₁ = W₁ + W₂

          N₁ = 500 + 800

          N₁ = 1300 N

b) for this case change the firefighter's distance d₂ = 9 m

          x₂ = 9 cos 60

          x₂ = 4.5 m

we substitute in 1

          N₂ = \frac{500 \ 3.75 \ + 800 \ 4.5}{13}  

          N₂ = 421.15 N

of the translational equilibrium equation on the x-axis

          fr = F₁ = N₂

          fr = 421.15 N

friction force has the expression

          fr = μ N

in this case the reaction of the Earth to the support of the ladder is N1 = 1300N

          μ = fr / N₁

          μ = 421.15 / 1300

          μ = 0.324

8 0
2 years ago
Calculate the force of gravity on the 0.60-kg mass if it were 1.3×107 m above Earth's surface (that is, if it were three Earth r
KIM [24]
The force of gravity between two objects is given by:
F=G \frac{m_1 m_2}{r^2}
where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is their separation

In this problem, the mass of the object is m_1=0.60 kg, while the Earth's mass is m_2=5.97 \cdot 10^{24} kg. Their separation is r=1.3 \cdot 10^7 m, therefore the gravitational force exerted on the object is
F=(6.67 \cdot 10^{-11}m^3 kg^{-1} s^{-2}) \frac{(0.60 kg)(5.97 \cdot 10^{24} kg)}{(1.3 \cdot 10^7 m)^2}=1.4 N
5 0
3 years ago
Kyle has a mass of 54kg and is moving at 3 m/s what is his kinetic energy
Mars2501 [29]

Answer:

243J

Explanation:

K.E = 1/2 x 54 x 3^2

K.E = 1/2 x 54 x 9

K.E = 1/2 x 486

K.E = 486/2

K.E = 243J

6 0
3 years ago
No force is necessary to
igor_vitrenko [27]
No force is necessary to keep a moving object moving (in a straight line at a constant speed).
4 0
3 years ago
If mass of both the objects are doubled
Fofino [41]

Answer:

it should be four times

4 0
2 years ago
Other questions:
  • Please help!!!! I will give brainliest if correct!!!
    14·1 answer
  • The Kinect energy of a book on a shelf is equal to the work done to lift the book to the shelf
    14·2 answers
  • Which planet is closest to the sun? Venus Pluto Neptune Mercury
    7·2 answers
  • The electric force between two charged objects depends on which of the following
    5·2 answers
  • Which has a neutral charge?
    10·2 answers
  • Two bumper cars move in a straight line with the following equations of motion: x1 = -4.0 m + (1.1 m/s )t x2 = 8.8 m + (-2.9 m/s
    12·1 answer
  • The speed of a wave is 70 m/s. If the wavelength of the wave is 0.4
    11·2 answers
  • a plane passes over Point A with a velocity of 8,000 m/s north. Forty seconds later it passes over Point B with a velocity of 10
    8·1 answer
  • NO LINKS PLEASE HELP The Spring Tide is found during which moon phases?
    13·1 answer
  • 8th grade science help help
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!