Answer:
A glacial lake outburst flood is a type of outburst flood caused by the failure of a dam containing a glacial lake. An event similar to a GLOF, where a body of water contained by a glacier melts or overflows the glacier, is called a jökulhlaup. The dam can consist of glacier ice or a terminal moraine.
The hang time of the ball is 4.08 s
Explanation:
The ball is in free fall motion: this means that it is acted upon gravity only, so its acceleration is the acceleration of gravity,

downward (the negative sign refers to the downward direction).
Since this is a uniformly accelerated motion, we can solve the problem by using the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time
First we calculate the time it takes for the ball to reach the maximum height, where the velocity is zero:
v = 0
Substituting:
u = +20 m/s

we find t

The motion of the ball is symmetrical, so the total time of flight is just twice the time needed to reach the maximum height, therefore:

Learn more about free fall:
brainly.com/question/1748290
brainly.com/question/11042118
brainly.com/question/2455974
brainly.com/question/2607086
#LearnwithBrainly
When two or more waves combine to produce a new wave, that's 'interference'.
-- If the new wave has larger displacements (amplitude), then it's <em>CON</em>structive interference.
-- If the new wave has smaller displacements (amplitude), then it's DEstructive interference.
Answer:
1
Explanation:
it was thinking about how much and then the other than you can get it would be able to ask her to be able and then the way you have been sent from your browser
The rms speed of the molecules of gas A is twice that of gas B. The molecular mass of A is one fourth to that of B.
Answer: Option B
<u>Explanation:</u>
Measuring the speed of particles at a given point in time results in a large distribution of values. Some molecules can move very slowly, others very fast, and because they are still moving in different directions, the speeds may be zero. (Velocity, vector quantity that corresponds to the speed and direction of the molecule.)
To correctly estimate the average velocity, you must take the squares of the mean velocity and take the square root of this value. This is known as the root mean square (rms) velocity and is shown as follows:

Where,
M – Gas’s molar mass
R – Molar mass constant
T – Temperature (in Kelvin)
Given data is rms speed for gas molecule A is twice that of gas molecule B. So,

Therefore, equating the molecule’s rms speed formula for both A and B,

On squaring both sides, we get,

By solving the above equations, we get,
