When The rate of effusion is inversely proportional to the √molar mass of the substance.
and we have R(He) = 1L / 4.5 min so,
R(He)/R(Cl2) = (molar mass of Cl2/ molar mass of He)^0.5
and when we have the molar mass of Cl2 = 70.9 & the molar mass of He = 4
so by substitution:
(1L/4.5 min)/ R(Cl2) = (70.9 / 4)^0.5
(1L/4.5 min) / R(Cl2) = 4.21
∴R(Cl2) = (1L/4.5 min) / 4.21 = 1L/ (4.5*4.21)min = 1 L / 18.945 min
∴Cl2 will take 18.945 min for 1 L to effuse under identical conditions
increase the rate of chemical change.
Explanation:
The reaction of the metal oxide with water to form a base in the presence of a spike in temperature will lead to an increase in the rate of chemical change.
Temperature change has considerable effect on reaction rates.
- Temperature is directly proportional to the average kinetic energy of reacting particles.
- Reaction rates varies directly with a spike in temperature.
- It has been known that for every 10°C rise in temperature, above the room temperature, reaction rates become double or tripled.
- Temperature increases the kinetic energy of each of the reacting particles.
- Many of the reacting particles also acquires an energy greater than or equal to the activation energy of the reaction.
- The frequency of ordinary collisions and effective collisions per unit time increases.
Learn more;
Activation energy brainly.com/question/3930233
#learnwithBrainly
Answer:
K2S(aq) + BaCl2(aq) = 2KCl(aq) + BaS(s)
In the image attached, it is explained how the solution is balanced.