The answer for this question is Control Variable because it doesn’t change throughout the experiment.
Answer:
A₁/A₂ = 0.44
Explanation:
The emissive power of the bulb is given by the formula:
P = σεAT⁴
where,
P = Emissive Power
σ = Stefan-Boltzman constant
ε = Emissivity
A = Surface Area
T = Absolute Temperature of Surface
<u>FOR BULB 1:</u>
Since, emissivity and emissive power are constant.
Therefore,
P = σεA₁T₁⁴ ----------- equation 1
where,
A₁ = Surface Area of Bulb 1
T₁ = Temperature of Bulb 1 = 3000 k
<u>FOR BULB 2:</u>
Since, emissivity and emissive power are constant.
Therefore,
P = σεA₂T₂⁴ ----------- equation 2
where,
A₂ = Surface Area of Bulb 2
T₂ = Temperature of Bulb 1 = 2000 k
Dividing equation 1 by equation 2, we get:
P/P = σεA₁T₁⁴/σεA₂T₂⁴
1 = A₁(3000)²/A₂(2000)²
A₁/A₂ = (2000)²/(3000)²
<u>A₁/A₂ = 0.44</u>
Answer:
The acceleration is 1 cm/s^2.
Explanation:
The acceleration is defined as the rate of change of velocity.
Here, initial velocity, u = 3/1 = 3 cm/s
final velocity, v = 4/1 = 4 cm/s
time, t = 1 s
Let the acceleration is a.
Use first equation of motion
v = u + at
4 = 3 + 1 x a
a = 1 cm/s^2
Answer: D
All the particles must be uncharged
Explanation:
If all the particles are positively charged, then there will be force of repulsion between them which will give different directions away from each other. The same is applicable if they are all negatively charged.
If the particles are positively and negatively charged, their will be force of attraction between them which will give different directions towards each other.
For all to be experiencing forces in the same direction, We can conclude that
All the particles must be uncharged.
The re<span>sistance of the second wire is 16 R.
where R is the resistance of the first wire.
R = </span>ρ

where l = length of the wire
A = area of the wire
A =

where, r =

Thus, on finding the ratio of resistance of the two wires, we get,

here, R1 = R
l1 = 8m
l2 = 2m
A1=π

A1=π

we get. R2 = 16R