Answer:
F=ma is the relationship where, F is force, m is mass and a is acceleration.
Newton's second law states that the unbalanced force applied to the object accelerates the object which is directly proportional to the force and inversely to the mass.
If we apply force to a toy car then It will accelerate.
This is how Newton's second law of motion is verified.
To provide a greater certainty that the observed results are not by chance.
Answer:
0.79 s
Explanation:
We have to calculate the employee acceleration, in order to know the minimum time. According to Newton's second law:

The frictional force is maximum since the employee has to apply a maximum force to spend the minimum time. In y axis the employee's acceleration is zero, so the net force is zero. Recall that 
Now, we find the acceleration:

Finally, using an uniformly accelerated motion formula, we can calculate the minimum time. The employee starts at rest, thus his initial speed is zero:

Answer:
The vehicle with the most mass
Explanation:
Momentum is the quantity of motion in a body and it is dependent on its mass and velocity.
Momentum = m x v
m is the mass
v is the velocity
Now,
Both mass and velocity are directly proportional to momentum. Since the two bodies moves with the same velocity, the vehicle with the most mass will have the greatest momentum
Answer:
221754385964.9123
Explanation:
Convert miles to nanometer
1 mile = 1.6 km
1 km = 1×10³×10³×10³×10³ nm
1 mile = 1.6×10¹² nm
So,
158 miles = 158×1.6×10¹² = 252.8×10¹² nm
Length of each molecule = 1140 nm
Number of molecules = Total length / Length of each molecule

There are 221754385964.9123 number of molecules in a stretch of 158 miles