Answer:
Electric field at a distance of 1.45 cm will be 
Explanation:
We have given the distance d = 1.45 cm = 0.0145 m
And the potential difference 
There is a relation between potential difference and electric field
Electric field at a distance d due to a potential difference is given by
, here E is electric field, V is potential difference and d is distance
So 
Answer:
The mass of the ball is 0.23 kg
Explanation:
Given that
radius ,r= 3.74 cm
Density of the milk ,ρ = 1.04 g/cm³ = 1.04 x 10⁻³ kg/cm³
Normal force ,N= 9.03 x 10⁻² N
The volume of the ball V


V= 219.13 cm³
The bouncy force on the ball = Fb
Fb = ρ V g
Fb + N = m g
m=Mass of the ball = Density x volume
m = γ V , γ =Density of the Ball
ρ V g + N = γ V g ( take g= 10 m/s²)


γ = 0.00108 kg/cm³
m = γ V
m = 0.00108 x 219.13
m= 0.23 kg
The mass of the ball is 0.23 kg
Answer:
5m/s²
Explanation:
Given parameters:
Mass of wagon = 10kg
Force of pull = 70N
Frictional force = 20N
Unknown:
Acceleration of the wagon = ?
Solution:
Frictional force is a force that opposes motion.
The net force is given as:
Net force = mass x acceleration
Force of pull - Frictional force = mass x acceleration
Insert the parameters and solve;
70 - 20 = 10 x acceleration
50 = 10 x acceleration
Acceleration = 5m/s²
Answer:
nice!!! but did you know that geico can save you 15% or more on car insurance!
Explanation:
Answer:
Explanation:
Given:
Specific heat of gold = 0.031cal/°C
Specific heat of silver = 0.057cal/°C
To know the metals that will heat up faster, we must understand the meaning of specific heat capacity.
It is the amount of heat required to raise the temperature of 1g of a substance by 1°C.
Now,
The higher the specific heat capacity the more energy it is required to heat up the substance.
So, Gold with a specific heat capacity of 0.031cal/°C will heat up faster.