1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ohaa [14]
3 years ago
11

5.00 kg of liquid water is heated to 100.0 °C in a closed system. At this temperature, the density of liquid water is 958 kg/m3.

The pressure is maintained at atmospheric pressure of 1.01 × 105 Pa. A moveable piston of negligible weight rests on the surface of the water. The water is then converted to steam by adding an additional amount of heat to the system. When all of the water is converted, the final volume of the steam is 8.50 m3. The latent heat of vaporization of water is 2.26 × 106 J/kg. How much heat is added to the system in the isothermal process of converting all of the water into steam?
Physics
1 answer:
user100 [1]3 years ago
8 0

Answer:

1.04\times 10^7\ J.

Explanation:

In the question given :

Pressure is constant

Therefore, Work done, W=P\times\Delta V

Pressure, P=1.01 × 105 Pa.

Final volume, V_f=8.50\ m^3.

Initial volume, V_i=\dfrac{Mass}{density}=\dfrac{5}{958}=5.22\times10^-3\ m^3.

Therefore, W=8.58\times 10^{5}\ J.

Also, Heat Given, Q=m\times L=5\times 2.26\times 10^{6}\ J=1.13\times 10^7\ J.

Also, according to First law of thermodynamics:

\Delta U=Q-W=(1.13\times 10^7)-(8.58\times 10^5)=1.04\times 10^7\ J.

Hence, this is the required solution.

You might be interested in
QUICKKK I NEEEED HELP PLZ!!!!!!!!!!!!
avanturin [10]
There would be martial law (just elaborate on the definition) and the population would go awry(elaborate on subject)
4 0
3 years ago
Show the weight of the ladder and draw the missing Frictional force.
madreJ [45]
Since there is no friction between the ladder and the wall, there can be no vertical force component. That's the tricky part ;)

So to find the weight, divide the 100N <em>normal</em> force by earths gravitational acceleration, 9.8m/s^2

W =  \frac{N}{g}  =  \frac{100N}{9.8m/s^{2}} =  \frac{100}{9.8} = 10.2kg


Then;
Draw an arrow at the base of the ladder pointing towards the wall with a value of 30N, to show the frictional force.
5 0
3 years ago
The energy that is released by cellular respiration is the form of
Y_Kistochka [10]
I believe the energy released in cellular respiration is in the form of ATP.
6 0
4 years ago
3. Maverick and Goose are flying a training mission in their F-14. They are
Elanso [62]

Answer:

A. The bomb will take <em>17.5 seconds </em>to hit the ground

B. The bomb will land <em>12040 meters </em>on the ground ahead from where they released it

Explanation:

Maverick and Goose are flying at an initial height of y_0=1500m, and their speed is v=688 m/s

When they release the bomb, it will initially have the same height and speed as the plane. Then it will describe a free fall horizontal movement

The equation for the height y with respect to ground in a horizontal movement (no friction) is

y=y_0 - \frac{gt^2}{2}    [1]

With g equal to the acceleration of gravity of our planet and t the time measured with respect to the moment the bomb was released

The height will be zero when the bomb lands on ground, so if we set y=0 we can find the flight time

The range (horizontal displacement) of the bomb x is

x = v.t     [2]

Since the bomb won't have any friction, its horizontal component of the speed won't change. We need to find t from the equation [1] and replace it in equation [2]:

Setting y=0 and isolating t we get

t=\sqrt{\frac{2y_0}{g}}

Since we have y_0=1500m

t=\sqrt{\frac{2(1500)}{9.8}}

t=17.5 sec

Replacing in [2]

x = 688\ m/sec \ (17.5sec)

x = 12040\ m

A. The bomb will take 17.5 seconds to hit the ground

B. The bomb will land 12040 meters on the ground ahead from where they released it

6 0
3 years ago
In this example we will analyze the forces acting on your body as you move in an elevator. Specifically, we will consider the ca
dexar [7]

Answer:

The reading of the scale during the acceleration is 446.94 N

Explanation:

Given;

the reading of the scale when the elevator is at rest = your weight, w = 600 N

downward acceleration the elevator, a = 2.5 m/s²

The reading of the scale can be found by applying Newton's second law of motion;

the reading of the scale  = net force acting on your body

R = mg + m(-a)

The negative sign indicates downward acceleration

R = m(g - a)

where;

R is the reading of the scale which is your apparent weight

m is the mass of your body

g is acceleration due to gravity, = 9.8 m/s²

m = w/g

m = 600 / 9.8

m = 61.225 kg

The reading of the scale is now calculated as;

R = m(g-a)

R = 61.225(9.8 - 2.5)

R = 446.94 N

Therefore, the reading of the scale during the acceleration is 446.94 N

4 0
3 years ago
Other questions:
  • In a stadium, fans stand up and sit down to produce a wave across the stadium. This type of wave where the material travels perp
    5·2 answers
  • If a marble is released from a height of 10 m how long would it take for it to hit the ground?
    11·1 answer
  • Which category of materials does concrete belong to and why?
    10·2 answers
  • At a country music festival, a band is playing at the end of a crowded
    9·1 answer
  • Discuss the relationship between electric and magnetic fields
    14·1 answer
  • You can carry a 50 N weight up a flight of stairs that is 3 m high in 10 s. Then you carry 40 N up two flights of stairs in 20 s
    14·1 answer
  • 2. Heather and Matthew walk with an average velocity of +0.87 m/s eastward.
    11·1 answer
  • Help me with this homework
    10·1 answer
  • Equal forces that do not cause a change in an object's motion
    7·1 answer
  • 29. All living organisms contain carbon. As organisms grow, they require
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!