1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sauron [17]
3 years ago
5

If the magnitude of the magnetic force on a proton is F when it is moving at 18.0 ∘ with respect to the field, what is the magni

tude of the force (in terms of F) when this charge is moving at 33.0 ∘ with respect to the field?
Physics
1 answer:
Lelu [443]3 years ago
5 0

Answer:

The force when θ = 33° is 1.7625 times of the force when θ = 18°

Explanation:

The force on a moving charge through a magnetic field is given by

F = qvB sin θ

q = charge of the moving particle

v = Velocity of the moving charge

B = Magnetic field strength

θ = angle between the magnetic field and the velocity (direction of the motion) of the moving charge

Because qvB are all constant, we can call the expression K.

F = K sinθ

when θ = 18°,

F = K sin 18° = 0.309K

when θ = 33°, let the force be F₁

F₁ = K sin 33° = 0.5446K

(F₁/F) = (0.5446K/0.309K) = 1.7625

F₁ = 1.7625 F

Hope this Helps!!!

You might be interested in
Write a paragraph of no less than five sentences explaining how Newton's First Law of Motion supports people's need to wear seat
Inessa [10]
Newton's first law can be taken to mean that if something is moving it tends to keep moving. if at rest it tends to stay at rest.

so, in a car, you and the car are both moving, say at constant speed. Now you're not actually connected to the car as in clamped to it, not yet at least. You're simply sitting in it at rest with respect to it.

but, someone slams on the brakes for whatever reason. The car slows down/stops. what do you do ? well, you would keep going. and moving a few feet in a car can be dangerous, esp if you're moving at high speed. Unless of course you're clamped to the seat, and the seat is clamped to the car and the car is clamped together. then when the car brakes, yes you'll feel the braking effect, but the belt will restrict your movement, keeping you safe, if shocked and bruised.
7 0
2 years ago
A 5592 N piano is to be pushed up a(n) 3.79 m frictionless plank that makes an angle of 30.1 ◦ with the horizontal. Calculate th
otez555 [7]

Answer:

10628.87 J

Explanation:

We are given that

Force applied =F=5592 N

\theta=30.1^{\circ}

Displacement=D=3.79 m

We have to find the work done in sliding the piano up the plank at a slow constant rate.

Work done=F\times displacement

The perpendicular component of force=FSin\theta=5592sin(30.1)=2804.45N

Work done =Fsin\theta\times D=2804.45\times 3.79=10628.87 J

Hence, the work done in sliding the piano up the plank at a slow constant rate=10628.87 J

8 0
3 years ago
Read 2 more answers
Which of the following is an example if harmonic motion?
german

Answer:

"A pendulum swinging back and forth" is an example of harmonic motion

X = Xo cos ω t

Explains the back and forth motion of the pendulum

3 0
2 years ago
A professor designing a class demonstration connects a parallel-plate capacitor to a battery, so that the potential difference b
Lesechka [4]

Answer:

a)  Q = 397.57 pC , Q = 3.18 104 pC , b) C = 1.157 10⁻¹⁰ F ,  V = 3.4375 V ,

c)  U = 54.7 nJ ,  d) ΔU = 54 nJ,

Explanation:

a) The capacity of a capacitor is defined

        C = Q / V

        Q = C V

         

can also be calculated using geometry consideration

        C = e or A / d

         

we reduce to the SI system

       A = 25.0 cm² (1 m / 10² cm) 2 = 25.0 10⁻⁴ m²

       d = 1.53 cm = 1.53 10⁻² m

we substitute

         Q = eo A / d V

         Q = 8.85 10⁻¹² 25 10⁻⁴ / 1.53 10⁻² 275

         Q = 3.9757 10⁻¹⁰ C

         

let's reduce to pC

         Q = 3.9757 10⁻¹⁰ C (10¹² pC / 1 C)

          Q = 397.57 pC

when the capacitor is introduced into the water the dielectric constant is different

           Q = k Q₀

           Q = 80 397.57

           Q = 3.18 104 pC

b) Find capacitance and voltage after submerged in water

           C = k C₀

           C = 80 8.85 10⁻¹² 25 10⁻⁴ / 1.53 10⁻²

           C = 1.157 10⁻¹⁰ F

           V = Vo / k

            V = 275/80

            V = 3.4375 V

c) The stored energy is

             U = ½ C V²

              U = ½, 85 10⁻¹² 25 10⁻⁴ / 1.53 10⁻²     275²

             U = 5.47 10⁻⁸ J

let's reduce to nJ

              109 nJ = 1 J

               U = 54.7 nJ

d) energy after submerging

             U = ½ (kCo) (Vo / k) 2

             U = ½ Co Vo2 / k

             U = U₀ / k

             U = 54.7 / 80 nJ

              U = 0.68375 nJ

the energy change is

         ΔU = U₀ -U

          ΔU = 54.7 - 0.687375

           

6 0
3 years ago
Gravitational notes of physics ​
Pachacha [2.7K]

Answer:

Every object in the universe attracts other object by a force of attraction, called gravitation, which is directly proportional to the product of masses of the objects and inversely proportional to the square of distance between them. This is called Law of Gravitation or Universal Law of Gravitation.

Let masses (M) and (m) of two objects are distance (d) apart. Let F be the attractional force between two masses.

Importance of The Universal Law of Gravitation

It binds us to the earth.

It is responsible for the motion of the moon around the earth.

It is responsible for the motion of planets around the Sun.

Gravitational force of moon causes tides in seas on earth.

Free Fall

When an object falls from any height under the influence of gravitational force only, it is known as free fall.

Acceleration Due to Gravity

When an object falls towards the earth there is a change in its acceleration due to the gravitational force of the earth. So this acceleration is called acceleration due to gravity.

The acceleration due to gravity is denoted by g.

The unit of g is same as the unit of acceleration, i.e., ms−2

Mathematical Expression for g

From the second law of motion, force is the product of mass and acceleration.

F = ma

For free fall, acceleration is replaced by acceleration due to gravity.

Therefore, force becomes:

F = mg ….(i)

But from Universal Law of Gravitation,

Factors Affecting the Value of g

As the radius of the earth increases from the poles to the equator, the value of g becomes greater at the poles than at the equator.

As we go at large heights, value of g decreases.

To Calculate the Value of g

Value of universal gravitational constant, G = 6.7 × 10–11 N m2/ kg2,

Mass of the earth, M = 6 × 1024 kg, and

Radius of the earth, R = 6.4 × 106 m

Putting all these values in equation (iii), we get:

Thus, the value of acceleration due to gravity of the earth, g = 9.8 m/s2.

Difference between Gravitation Constant (G) and Gravitational Acceleration (g)

S. No.

Gravitation Constant (G)

Gravitational acceleration (g)

1.

Its value is 6.67×10-11Nm2/kg2.

Its value is 9.8 m/s2.

2.

It is a scalar quantity.

It is a vactor quantity.

3.

Its value remains constant always and everywhere.

Its value varies at various places.

4.

Its unit is Nm2/kg2.

Its unit is m/s2.

Motion of Objects Under the Influence of Gravitational Force of the Earth

Let an object is falling towards earth with initial velocity u. Let its velocity, under the effect of gravitational acceleration g, changes to v after covering the height h in time t.

Then the three equations of motion can be represented as:

Velocity (v) after t seconds, v = u + ght

Height covered in t seconds, h = ut + ½gt2

Relation between v and u excluding t, v2 = u2 + 2gh

The value of g is taken as positive in case of the object is moving towards earth and taken as negative in case of the object is thrown in opposite direction of the earth.

Mass & weight

Mass (m)

The mass of a body is the quantity of matter contained in it.

Mass is a scalar quantity which has only magnitude but no direction.

Mass of a body always remains constant and does not change from place to place.

SI unit of mass is kilogram (kg).

Mass of a body can never be zero.

Weight (W)

The force with which an object is attracted towards the centre of the earth, is called the weight of the object.

Now, Force = m × a

But in case of earth, a = g

∴ F = m × g

But the force of attraction of earth on an object is called its weight (W).

∴ W = mg

As weight always acts vertically downwards, therefore, weight has both magnitude and direction and thus it is a vector quantity.

The weight of a body changes from place to place, depending on mass of object.

The SI unit of weight is Newton.

Weight of the object becomes zero if g is zero.

Weight of an Object on the Surface of Moon

Mass of an object is same on earth as well as on moon. But weight is different.

Weight of an object is given as,

Hence, weight of the object on the moon = (1/6) × its weight on the earth.

Try the following questions:

Q1. State the universal law of gravitation.

Q2. When we move from the poles to the equator, the value of g decreases. Why?

Q3. If two stones of 150 gm and 500 gm are dropped from a height, which stone will reach the surface of the earth first and why ?

Q4. Differentiate between weight and mass.

Q5. Why is the weight of an object on the moon 1/6th its weight on the earth??

7 0
3 years ago
Other questions:
  • Why does the moon appear to wax grow larger and then wane or get smaller
    11·1 answer
  • When a candle burns, which forms of energy does the chemical energy in the candle change to? A. light and sound B. heat and soun
    15·2 answers
  • Which of the following is an example of kinetic energy being converted to potential energy? A. At an ice rink, an ice skater giv
    12·2 answers
  • Reason behind the study of refraction of light
    7·1 answer
  • An object is attached to a vertical spring and bobs up and down between points A and B. Where is the object located when its kin
    14·1 answer
  • What happens to the gravitational force between two objects when the distance between them increases by 3 times?
    5·1 answer
  • 10. Unless a light ray comes into contact with a surface or enters a different material, it
    5·1 answer
  • If a mass of 1 kg is accelerated to 1 m/s2 by a force of 1 N, then
    15·1 answer
  • How might "Roller Coaster Physics" have been different if the author's purpose had been to warn
    12·1 answer
  • What do magnesium and chlorine react to form?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!