Answer:
potential energy increases.
Explanation:
The potential energy between the two charged particles is given by
U = k Q q / r
If they are very far apart then r tends to infinity and the potential energy is zero.
If they come closer then the potential energy between the two charged particles increases.
Thus, the potential energy increases.
Answer:
a) 17.49 seconds
b) 13.12 seconds
c) 2.99 m/s²
Explanation:
a) Acceleration = a = 1.35 m/s²
Final velocity = v = 85 km/h = 
Initial velocity = u = 0
Equation of motion

Time taken to accelerate to top speed is 17.49 seconds.
b) Acceleration = a = -1.8 m/s²
Initial velocity = u = 23.61\ m/s
Final velocity = v = 0

Time taken to stop the train from top speed is 13.12 seconds
c) Initial velocity = u = 23.61 m/s
Time taken = t = 7.9 s
Final velocity = v = 0

Emergency acceleration is 2.99 m/s² (magnitude)
Answer:
Option D
490 J
Explanation:
When at a height of 100 am above and released, the ball initially posses only potential energy. When it falls, some potential energy is converted to kinetic energy.
Initial potential energy= mgh where m is the mass, g is the acceleration due to gravity and h is height. Substituting 1 Kg for m, 9.81 for g and 100 m for h then
PE initial = 1*9.81*100= 981 J
At 50 m, PE will be 1*9.81*50=490.5 J
Subtracting PE at 50 m from initial PE we get the energy that has been converted to kinetic energy hence
981-490.5= 490.5 J
Approximately, 490 J
The picture shows it has a real life something to display conservation of energy with kinetic energy and potential energy.
Five sentences are for potential and kinetic energy. Potential energy is to energy an object when it stores. Kinetic energy is something to motion. When the potential energy is slows down the potential energy it might be increases. As from the object when the speeds up and it is decreases to potential energy.
Kinetic energy is to calculated by KE= mass×velocity²/2 as a fraction.
Potential energy is to calculated by PE= mass×g×height.
And the another picture it has a <span>energy, kinetic energy, mechanical energy, conservation of energy.
</span>
This is a uniform rectilinear motion (MRU) exercise.
To start solving this exercise, we obtain the following data:
<h3><u>
Data:</u></h3>
- v = 4.6 m/s
- d = ¿?
- t = 10 sec
To calculate distance, speed is multiplied by time.
We apply the following formula: d = v * t.
We substitute the data in the formula: the <u>speed is equal to 4.6 m/s,</u> the <u>time is equal to 10 s</u>, which is left as follows:


Therefore, the speed at 10 seconds is 46 meters.
