Answer:
Explanation:
Initial angular velocity ω₁ = 0 , final angular velocity ω₂ = 75.9 rad /s
angle rotated = θ
= 37 x 2π
= 74 π
The formula for angular velocity
ω₂² = ω₁² + 2αθ , α is angular acceleration
75.9² = 0 + 2 α x 74 π
α = 75.9² / 2 x 74 π
= 12.396 rad / s²
Answer:
t = 5.89 s
Explanation:
To calculate the time, we need the radius of the pulley and the radius of the sphere which was not given in the question.
Let us assume that the radius of the pulley (
) = 0.4 m
Let the radius of the sphere (r) = 0.5 m
w = angular speed = 150 rev/min = (150 × 2π / 60) rad/s = 15.708 rad/s
Tension (T) = 20 N
mass (m) = 3 kg each


Substituting values:

Here we apply conservation of linear momentum. The momentum of the truck with cargo and without cargo remains constant. That is,
.
Here
are initial mass and velocity.
are final mass and velocity. Here
and
.
The velocity of the truck be after its cargo is taken off is

Answer:
Inertia is directly proportional to mass of an object. Therefore, when the force of inertia increases the mass also increases, and when it decreases the mass also decreases.
Explanation:
Answer:
= 1000 hours
Explanation:
Earth's circumference is 10⁴ mile
speed of a sailboat is 10¹ mile/hour
distance = speed × time
10⁴ = 10¹ × t
t = 10⁴ / 10¹
t = 10³
= 1000 hours