Answer:
x = 41.2 m
Explanation:
The electric force is a vector magnitude, so it must be added as vectors, remember that the force for charges of the same sign is repulsive and for charges of different sign it is negative.
In this case the fixed charges (q₁ and q₂) are positive and separated by a distance (d = 100m), the charge (q₃ = -1.0 10⁻³ C)) is negative so the forces are attractive, such as loads q₃ must be placed between the other two forces subtract
F = F₁₃ - F₂₃
let's write the expression for each force, let's set a reference frame on the charge q1
F₁₃ =
F₂₃ = 
they ask us that the net force be zero
F = 0
0 = F₁₃ - F₂₃
F₁₃ = F₂₃
k \frac{q_1 q_3}{x^2} =k \frac{q_2 q_3}{(d-x)^2}
q1 / x2 = q2 / (d-x) 2
(d-x)² =
x²
we substitute
(100 - x)² = 2/1 x²
100- x = √2 x
100 = 2.41 x
x = 41.2 m
Answer:
my dad is a physics professor so when he comes home i will tell him to answer the question for you
The outward push of the core created by nuclear fusion and the inward pull of gravity from the core
Answer:
the photons (quanta of light) collide with the electrons, these electrons have to overcome the threshold energy that is the energy of union with the metal, and the energy that remains is converted to kinetic energy.
K = E - Ф
Explanation:
The photoelectric effect is the emission of electrons from the surface of a metal.
This was correctly explained by Einstein, in his explanation the energy of the photons (quanta of light) collide with the electrons, these electrons have to overcome the threshold energy that is the energy of union with the metal, and the energy that remains is converted to kinetic energy.
E = hf
E = K + Ф
K = E - Ф
The energy of the photons is given by the Planck relation E = hf and according to Einstein the number of joints must be added
E = n hf
Therefore, depending on the value of this energy, the emitted electrons can have energy from zero onwards.