Answer:

Explanation:
The equation of equlibrium for the box is:

The formula for the acceleration, given in
, is:

Velocity can be derived from the following definition of acceleration:





![v =\sqrt{2\cdot[(2.278\,\frac{m}{s^{2}})\cdot x |_{0\,m}^{27\,m}-(0.034\,\frac{1}{s^{2}})\cdot x^{2}|_{0\,m}^{27\,m}] }](https://tex.z-dn.net/?f=v%20%3D%5Csqrt%7B2%5Ccdot%5B%282.278%5C%2C%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D%29%5Ccdot%20x%20%7C_%7B0%5C%2Cm%7D%5E%7B27%5C%2Cm%7D-%280.034%5C%2C%5Cfrac%7B1%7D%7Bs%5E%7B2%7D%7D%29%5Ccdot%20x%5E%7B2%7D%7C_%7B0%5C%2Cm%7D%5E%7B27%5C%2Cm%7D%5D%20%20%7D)
The speed after the box has travelled 17 meters is:

Answer i dont even know im just putting this cus id ont care
Explanation:
Acceleration x time = velocity
Since you're given acceleration and time, just plug the values into the equation.
3

x 1.1 s = ?
Solve that equation, and remember your velocity should be in m/s.
Force = (mass) x (acceleration)
Force = (18 kg) x (3 m/s²) = 54 newtons
As long as you continue pushing the cart with 54 newtons of force,
it will accelerate at 3 m/s².
At the instant you release it, or keep your hands on it but stop pushing,
it will stop accelerating. It'll continue forward at the speed it had when
the 54 newtons of force stopped.
The one that research has determined about the orbit of an electron around nucleus is : Each sub-level electron type has a unique path where it will likely to be found
Here are the sub levels of an electron :
-sub level s, maximum number of 2 electrons
- sub level p, maximum number of 6 electrons
- sub level d, maximum number of 10 electrons
- sub level f, maximum number of 14 electrons